Loading…
Improvement of the durability of porous silicon through functionalisation for biomedical applications
The durability of porous silicon (PS) in solutions was improved by grafting a molecule, 2,4,6,8-tetramethyl-2,4,6,8-tetravinyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane (TE), with four terminal vinyl groups. With a native PS sample as control, we compared the long-term durability of three modified PS sa...
Saved in:
Published in: | Thin solid films 2011-03, Vol.519 (10), p.3325-3333 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The durability of porous silicon (PS) in solutions was improved by grafting a molecule, 2,4,6,8-tetramethyl-2,4,6,8-tetravinyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane (TE), with four terminal vinyl groups. With a native PS sample as control, we compared the long-term durability of three modified PS samples: TE-, undec-10-enoic acid (UA)-, and TE/UA(TE first and UA followed)-grafted PS, in a weak organic base of dimethyl sulfoxide, an aqueous mineral solution of CuBr
2, and phosphate buffered saline respectively. Results indicate that TE-grafting is a straightforward and impactful approach to protect PS from oxidation and degradation. Further we used the TE-grafted PS to fabricate a prototype protein microarray by post-grafting UA and subsequently converting UA to nitrilotriacetic acid/Ni
2+ for binding histidine-tagged proteins. |
---|---|
ISSN: | 0040-6090 1879-2731 |
DOI: | 10.1016/j.tsf.2010.12.015 |