Loading…

A Multilevel Hierarchical Image Segmentation Method for Urban Impervious Surface Mapping Using Very High Resolution Imagery

This paper presents a hierarchical image segmentation method that combines multichannel watershed transformation and dynamics of watershed contours for the segmentation of very high resolution (VHR) multispectral imagery. The image gradient was first extracted from a multispectral image using a mult...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2011-03, Vol.4 (1), p.103-116
Main Authors: Li, Peijun, Guo, Jiancong, Song, Benqin, Xiao, Xiaobai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a hierarchical image segmentation method that combines multichannel watershed transformation and dynamics of watershed contours for the segmentation of very high resolution (VHR) multispectral imagery. The image gradient was first extracted from a multispectral image using a multichannel morphological method, followed by classical watershed transformation to produce an initial segmentation result. The resulting watershed contours were then analyzed according to their relevance relative to the minima of the adjacent basins to construct an image containing information about their dynamics. By thresholding the image of the contour dynamics at different levels, multilevel hierarchical segmentation results with different levels of detail were achieved. The proposed method was evaluated by comparing with existing methods through visual inspection, quantitative measures and applications in urban impervious surface mapping, using two sets of VHR image data. The experimental results showed that the proposed method produced more accurate segmentation results compared to an existing single-level segmentation method, in terms of visual and quantitative evaluations. While used for urban impervious surface mapping, the proposed method achieved an overall accuracy significantly higher than the pixel based classification method, and also higher than the object based classification using a single-level segmentation result. Compared with the most widely used segmentation method implemented in the eCognition, the proposed method achieved a comparable performance, although they have different segmentation details. The proposed segmentation method can be used in relevant VHR image processing and applications.
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2010.2074186