Loading…

Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy

Microstructure evolution in an as-cast Na modified Al–7%Si (wt. pct.) alloy was examined during redundant and monotonic straining by repetitive equi-channel angular pressing (ECAP) under ambient temperature conditions, and during friction stir processing (FSP). Redundant straining during repetitive...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2010-09, Vol.45 (17), p.4613-4620
Main Authors: García-Infanta, J. M., Zhilyaev, A. P., Carreño, F., Ruano, O. A., Su, J. Q., Menon, S. K., McNelley, T. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3
cites cdi_FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3
container_end_page 4620
container_issue 17
container_start_page 4613
container_title Journal of materials science
container_volume 45
creator García-Infanta, J. M.
Zhilyaev, A. P.
Carreño, F.
Ruano, O. A.
Su, J. Q.
Menon, S. K.
McNelley, T. R.
description Microstructure evolution in an as-cast Na modified Al–7%Si (wt. pct.) alloy was examined during redundant and monotonic straining by repetitive equi-channel angular pressing (ECAP) under ambient temperature conditions, and during friction stir processing (FSP). Redundant straining during repetitive ECAP was accomplished by processing following route B C while monotonic straining employed route A. Single- and multi-pass FSP was conducted on this same as-cast material using an FSP tool having a threaded pin. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The evolution of this microstructure during repetitive ECAP can be described by idealized models of this process. The primary and eutectic constituents can still be discerned and the Si particle distribution is not homogenized even during ambient temperature processing involving von Mises strains >9.0. In contrast, the primary and eutectic constituents cannot be distinguished in the stir zone after even a single FSP pass. Strain estimates based on the shape change of the primary α constituent indicate that the Si particle distribution has become homogeneous at local von Mises strains of 2.5–3.0 during the FSP thermomechanical cycle. Mechanical property data are consistent with strain path during SPD processing by repetitive ECAP and FSP.
doi_str_mv 10.1007/s10853-010-4530-4
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_869829061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A365455396</galeid><sourcerecordid>A365455396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3</originalsourceid><addsrcrecordid>eNp1kd1q3DAQhU1poNskD5A7QS9KL5zqx5KtyyX0JxAodHMvxvJ4o-C1XEleund5h75hn6RyXSgpFIEEZ74zjOYUxRWj14zS-n1ktJGipIyWlRT5elFsmKxFWTVUvCw2lHJe8kqxV8XrGB8ppbLmbFMcdymAG8kE6YHA2JGDs8HHFGab5oAEj36Yk_Mj6ebgxj2JeMSsd9j7cIDflSl4izEuVd_nJgRiaSEm8nCaPM4JbXKWbIefTz92jsAw-NNFcdbDEPHyz3te3H_8cH_zubz78un2ZntX2vyJVHLOlG6btkEuuGo6UdW8AxDYix44q1urLa-gA9W1QrdMQs9qrSupNFRZOi_erm3ziN9mjMkcXLQ4DDCin6NplG64popl8s0_5KOfw5hnM5xLrWoqaZ2p65Xaw4DGjb3P27P5dJj35kfsXda3QslKSqFVNrx7ZshMwu9pD3OM5nb39TnLVnYJIAbszRTcAcLJMGqWkM0asskhmyVkU2UPXz1xWtLB8Hfs_5t-ARk0qzs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259670507</pqid></control><display><type>article</type><title>Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy</title><source>Springer Nature</source><creator>García-Infanta, J. M. ; Zhilyaev, A. P. ; Carreño, F. ; Ruano, O. A. ; Su, J. Q. ; Menon, S. K. ; McNelley, T. R.</creator><creatorcontrib>García-Infanta, J. M. ; Zhilyaev, A. P. ; Carreño, F. ; Ruano, O. A. ; Su, J. Q. ; Menon, S. K. ; McNelley, T. R.</creatorcontrib><description>Microstructure evolution in an as-cast Na modified Al–7%Si (wt. pct.) alloy was examined during redundant and monotonic straining by repetitive equi-channel angular pressing (ECAP) under ambient temperature conditions, and during friction stir processing (FSP). Redundant straining during repetitive ECAP was accomplished by processing following route B C while monotonic straining employed route A. Single- and multi-pass FSP was conducted on this same as-cast material using an FSP tool having a threaded pin. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The evolution of this microstructure during repetitive ECAP can be described by idealized models of this process. The primary and eutectic constituents can still be discerned and the Si particle distribution is not homogenized even during ambient temperature processing involving von Mises strains &gt;9.0. In contrast, the primary and eutectic constituents cannot be distinguished in the stir zone after even a single FSP pass. Strain estimates based on the shape change of the primary α constituent indicate that the Si particle distribution has become homogeneous at local von Mises strains of 2.5–3.0 during the FSP thermomechanical cycle. Mechanical property data are consistent with strain path during SPD processing by repetitive ECAP and FSP.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-010-4530-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Aluminum base alloys ; Ambient temperature ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Constituents ; Crystallography and Scattering Methods ; Deformation ; Dendritic structure ; Equal channel angular pressing ; Eutectic temperature ; Eutectics ; Evolution ; Friction stir processing ; Intermetallic compounds ; Materials Science ; Microstructure ; Polymer Sciences ; Redundant ; Solid Mechanics ; Specialty metals industry ; Strain ; Thermomechanical properties ; Ultrafine Grained Materials</subject><ispartof>Journal of materials science, 2010-09, Vol.45 (17), p.4613-4620</ispartof><rights>The Author(s) 2010</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2010). All Rights Reserved. © 2010. This work is published under https://creativecommons.org/licenses/by-nc/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3</citedby><cites>FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>García-Infanta, J. M.</creatorcontrib><creatorcontrib>Zhilyaev, A. P.</creatorcontrib><creatorcontrib>Carreño, F.</creatorcontrib><creatorcontrib>Ruano, O. A.</creatorcontrib><creatorcontrib>Su, J. Q.</creatorcontrib><creatorcontrib>Menon, S. K.</creatorcontrib><creatorcontrib>McNelley, T. R.</creatorcontrib><title>Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Microstructure evolution in an as-cast Na modified Al–7%Si (wt. pct.) alloy was examined during redundant and monotonic straining by repetitive equi-channel angular pressing (ECAP) under ambient temperature conditions, and during friction stir processing (FSP). Redundant straining during repetitive ECAP was accomplished by processing following route B C while monotonic straining employed route A. Single- and multi-pass FSP was conducted on this same as-cast material using an FSP tool having a threaded pin. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The evolution of this microstructure during repetitive ECAP can be described by idealized models of this process. The primary and eutectic constituents can still be discerned and the Si particle distribution is not homogenized even during ambient temperature processing involving von Mises strains &gt;9.0. In contrast, the primary and eutectic constituents cannot be distinguished in the stir zone after even a single FSP pass. Strain estimates based on the shape change of the primary α constituent indicate that the Si particle distribution has become homogeneous at local von Mises strains of 2.5–3.0 during the FSP thermomechanical cycle. Mechanical property data are consistent with strain path during SPD processing by repetitive ECAP and FSP.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Ambient temperature</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Constituents</subject><subject>Crystallography and Scattering Methods</subject><subject>Deformation</subject><subject>Dendritic structure</subject><subject>Equal channel angular pressing</subject><subject>Eutectic temperature</subject><subject>Eutectics</subject><subject>Evolution</subject><subject>Friction stir processing</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Polymer Sciences</subject><subject>Redundant</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Strain</subject><subject>Thermomechanical properties</subject><subject>Ultrafine Grained Materials</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kd1q3DAQhU1poNskD5A7QS9KL5zqx5KtyyX0JxAodHMvxvJ4o-C1XEleund5h75hn6RyXSgpFIEEZ74zjOYUxRWj14zS-n1ktJGipIyWlRT5elFsmKxFWTVUvCw2lHJe8kqxV8XrGB8ppbLmbFMcdymAG8kE6YHA2JGDs8HHFGab5oAEj36Yk_Mj6ebgxj2JeMSsd9j7cIDflSl4izEuVd_nJgRiaSEm8nCaPM4JbXKWbIefTz92jsAw-NNFcdbDEPHyz3te3H_8cH_zubz78un2ZntX2vyJVHLOlG6btkEuuGo6UdW8AxDYix44q1urLa-gA9W1QrdMQs9qrSupNFRZOi_erm3ziN9mjMkcXLQ4DDCin6NplG64popl8s0_5KOfw5hnM5xLrWoqaZ2p65Xaw4DGjb3P27P5dJj35kfsXda3QslKSqFVNrx7ZshMwu9pD3OM5nb39TnLVnYJIAbszRTcAcLJMGqWkM0asskhmyVkU2UPXz1xWtLB8Hfs_5t-ARk0qzs</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>García-Infanta, J. M.</creator><creator>Zhilyaev, A. P.</creator><creator>Carreño, F.</creator><creator>Ruano, O. A.</creator><creator>Su, J. Q.</creator><creator>Menon, S. K.</creator><creator>McNelley, T. R.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100901</creationdate><title>Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy</title><author>García-Infanta, J. M. ; Zhilyaev, A. P. ; Carreño, F. ; Ruano, O. A. ; Su, J. Q. ; Menon, S. K. ; McNelley, T. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Ambient temperature</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Constituents</topic><topic>Crystallography and Scattering Methods</topic><topic>Deformation</topic><topic>Dendritic structure</topic><topic>Equal channel angular pressing</topic><topic>Eutectic temperature</topic><topic>Eutectics</topic><topic>Evolution</topic><topic>Friction stir processing</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Polymer Sciences</topic><topic>Redundant</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Strain</topic><topic>Thermomechanical properties</topic><topic>Ultrafine Grained Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Infanta, J. M.</creatorcontrib><creatorcontrib>Zhilyaev, A. P.</creatorcontrib><creatorcontrib>Carreño, F.</creatorcontrib><creatorcontrib>Ruano, O. A.</creatorcontrib><creatorcontrib>Su, J. Q.</creatorcontrib><creatorcontrib>Menon, S. K.</creatorcontrib><creatorcontrib>McNelley, T. R.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Infanta, J. M.</au><au>Zhilyaev, A. P.</au><au>Carreño, F.</au><au>Ruano, O. A.</au><au>Su, J. Q.</au><au>Menon, S. K.</au><au>McNelley, T. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>45</volume><issue>17</issue><spage>4613</spage><epage>4620</epage><pages>4613-4620</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Microstructure evolution in an as-cast Na modified Al–7%Si (wt. pct.) alloy was examined during redundant and monotonic straining by repetitive equi-channel angular pressing (ECAP) under ambient temperature conditions, and during friction stir processing (FSP). Redundant straining during repetitive ECAP was accomplished by processing following route B C while monotonic straining employed route A. Single- and multi-pass FSP was conducted on this same as-cast material using an FSP tool having a threaded pin. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The evolution of this microstructure during repetitive ECAP can be described by idealized models of this process. The primary and eutectic constituents can still be discerned and the Si particle distribution is not homogenized even during ambient temperature processing involving von Mises strains &gt;9.0. In contrast, the primary and eutectic constituents cannot be distinguished in the stir zone after even a single FSP pass. Strain estimates based on the shape change of the primary α constituent indicate that the Si particle distribution has become homogeneous at local von Mises strains of 2.5–3.0 during the FSP thermomechanical cycle. Mechanical property data are consistent with strain path during SPD processing by repetitive ECAP and FSP.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-010-4530-4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2010-09, Vol.45 (17), p.4613-4620
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_869829061
source Springer Nature
subjects Alloys
Aluminum base alloys
Ambient temperature
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Constituents
Crystallography and Scattering Methods
Deformation
Dendritic structure
Equal channel angular pressing
Eutectic temperature
Eutectics
Evolution
Friction stir processing
Intermetallic compounds
Materials Science
Microstructure
Polymer Sciences
Redundant
Solid Mechanics
Specialty metals industry
Strain
Thermomechanical properties
Ultrafine Grained Materials
title Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20path%20and%20microstructure%20evolution%20during%20severe%20deformation%20processing%20of%20an%20as-cast%20hypoeutectic%20Al%E2%80%93Si%20alloy&rft.jtitle=Journal%20of%20materials%20science&rft.au=Garc%C3%ADa-Infanta,%20J.%20M.&rft.date=2010-09-01&rft.volume=45&rft.issue=17&rft.spage=4613&rft.epage=4620&rft.pages=4613-4620&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-010-4530-4&rft_dat=%3Cgale_proqu%3EA365455396%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259670507&rft_id=info:pmid/&rft_galeid=A365455396&rfr_iscdi=true