Loading…
Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy
Microstructure evolution in an as-cast Na modified Al–7%Si (wt. pct.) alloy was examined during redundant and monotonic straining by repetitive equi-channel angular pressing (ECAP) under ambient temperature conditions, and during friction stir processing (FSP). Redundant straining during repetitive...
Saved in:
Published in: | Journal of materials science 2010-09, Vol.45 (17), p.4613-4620 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3 |
container_end_page | 4620 |
container_issue | 17 |
container_start_page | 4613 |
container_title | Journal of materials science |
container_volume | 45 |
creator | García-Infanta, J. M. Zhilyaev, A. P. Carreño, F. Ruano, O. A. Su, J. Q. Menon, S. K. McNelley, T. R. |
description | Microstructure evolution in an as-cast Na modified Al–7%Si (wt. pct.) alloy was examined during redundant and monotonic straining by repetitive equi-channel angular pressing (ECAP) under ambient temperature conditions, and during friction stir processing (FSP). Redundant straining during repetitive ECAP was accomplished by processing following route B
C
while monotonic straining employed route A. Single- and multi-pass FSP was conducted on this same as-cast material using an FSP tool having a threaded pin. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The evolution of this microstructure during repetitive ECAP can be described by idealized models of this process. The primary and eutectic constituents can still be discerned and the Si particle distribution is not homogenized even during ambient temperature processing involving von Mises strains >9.0. In contrast, the primary and eutectic constituents cannot be distinguished in the stir zone after even a single FSP pass. Strain estimates based on the shape change of the primary α constituent indicate that the Si particle distribution has become homogeneous at local von Mises strains of 2.5–3.0 during the FSP thermomechanical cycle. Mechanical property data are consistent with strain path during SPD processing by repetitive ECAP and FSP. |
doi_str_mv | 10.1007/s10853-010-4530-4 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_869829061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A365455396</galeid><sourcerecordid>A365455396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3</originalsourceid><addsrcrecordid>eNp1kd1q3DAQhU1poNskD5A7QS9KL5zqx5KtyyX0JxAodHMvxvJ4o-C1XEleund5h75hn6RyXSgpFIEEZ74zjOYUxRWj14zS-n1ktJGipIyWlRT5elFsmKxFWTVUvCw2lHJe8kqxV8XrGB8ppbLmbFMcdymAG8kE6YHA2JGDs8HHFGab5oAEj36Yk_Mj6ebgxj2JeMSsd9j7cIDflSl4izEuVd_nJgRiaSEm8nCaPM4JbXKWbIefTz92jsAw-NNFcdbDEPHyz3te3H_8cH_zubz78un2ZntX2vyJVHLOlG6btkEuuGo6UdW8AxDYix44q1urLa-gA9W1QrdMQs9qrSupNFRZOi_erm3ziN9mjMkcXLQ4DDCin6NplG64popl8s0_5KOfw5hnM5xLrWoqaZ2p65Xaw4DGjb3P27P5dJj35kfsXda3QslKSqFVNrx7ZshMwu9pD3OM5nb39TnLVnYJIAbszRTcAcLJMGqWkM0asskhmyVkU2UPXz1xWtLB8Hfs_5t-ARk0qzs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259670507</pqid></control><display><type>article</type><title>Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy</title><source>Springer Nature</source><creator>García-Infanta, J. M. ; Zhilyaev, A. P. ; Carreño, F. ; Ruano, O. A. ; Su, J. Q. ; Menon, S. K. ; McNelley, T. R.</creator><creatorcontrib>García-Infanta, J. M. ; Zhilyaev, A. P. ; Carreño, F. ; Ruano, O. A. ; Su, J. Q. ; Menon, S. K. ; McNelley, T. R.</creatorcontrib><description>Microstructure evolution in an as-cast Na modified Al–7%Si (wt. pct.) alloy was examined during redundant and monotonic straining by repetitive equi-channel angular pressing (ECAP) under ambient temperature conditions, and during friction stir processing (FSP). Redundant straining during repetitive ECAP was accomplished by processing following route B
C
while monotonic straining employed route A. Single- and multi-pass FSP was conducted on this same as-cast material using an FSP tool having a threaded pin. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The evolution of this microstructure during repetitive ECAP can be described by idealized models of this process. The primary and eutectic constituents can still be discerned and the Si particle distribution is not homogenized even during ambient temperature processing involving von Mises strains >9.0. In contrast, the primary and eutectic constituents cannot be distinguished in the stir zone after even a single FSP pass. Strain estimates based on the shape change of the primary α constituent indicate that the Si particle distribution has become homogeneous at local von Mises strains of 2.5–3.0 during the FSP thermomechanical cycle. Mechanical property data are consistent with strain path during SPD processing by repetitive ECAP and FSP.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-010-4530-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Aluminum base alloys ; Ambient temperature ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Constituents ; Crystallography and Scattering Methods ; Deformation ; Dendritic structure ; Equal channel angular pressing ; Eutectic temperature ; Eutectics ; Evolution ; Friction stir processing ; Intermetallic compounds ; Materials Science ; Microstructure ; Polymer Sciences ; Redundant ; Solid Mechanics ; Specialty metals industry ; Strain ; Thermomechanical properties ; Ultrafine Grained Materials</subject><ispartof>Journal of materials science, 2010-09, Vol.45 (17), p.4613-4620</ispartof><rights>The Author(s) 2010</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2010). All Rights Reserved. © 2010. This work is published under https://creativecommons.org/licenses/by-nc/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3</citedby><cites>FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>García-Infanta, J. M.</creatorcontrib><creatorcontrib>Zhilyaev, A. P.</creatorcontrib><creatorcontrib>Carreño, F.</creatorcontrib><creatorcontrib>Ruano, O. A.</creatorcontrib><creatorcontrib>Su, J. Q.</creatorcontrib><creatorcontrib>Menon, S. K.</creatorcontrib><creatorcontrib>McNelley, T. R.</creatorcontrib><title>Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Microstructure evolution in an as-cast Na modified Al–7%Si (wt. pct.) alloy was examined during redundant and monotonic straining by repetitive equi-channel angular pressing (ECAP) under ambient temperature conditions, and during friction stir processing (FSP). Redundant straining during repetitive ECAP was accomplished by processing following route B
C
while monotonic straining employed route A. Single- and multi-pass FSP was conducted on this same as-cast material using an FSP tool having a threaded pin. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The evolution of this microstructure during repetitive ECAP can be described by idealized models of this process. The primary and eutectic constituents can still be discerned and the Si particle distribution is not homogenized even during ambient temperature processing involving von Mises strains >9.0. In contrast, the primary and eutectic constituents cannot be distinguished in the stir zone after even a single FSP pass. Strain estimates based on the shape change of the primary α constituent indicate that the Si particle distribution has become homogeneous at local von Mises strains of 2.5–3.0 during the FSP thermomechanical cycle. Mechanical property data are consistent with strain path during SPD processing by repetitive ECAP and FSP.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Ambient temperature</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Constituents</subject><subject>Crystallography and Scattering Methods</subject><subject>Deformation</subject><subject>Dendritic structure</subject><subject>Equal channel angular pressing</subject><subject>Eutectic temperature</subject><subject>Eutectics</subject><subject>Evolution</subject><subject>Friction stir processing</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Polymer Sciences</subject><subject>Redundant</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Strain</subject><subject>Thermomechanical properties</subject><subject>Ultrafine Grained Materials</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kd1q3DAQhU1poNskD5A7QS9KL5zqx5KtyyX0JxAodHMvxvJ4o-C1XEleund5h75hn6RyXSgpFIEEZ74zjOYUxRWj14zS-n1ktJGipIyWlRT5elFsmKxFWTVUvCw2lHJe8kqxV8XrGB8ppbLmbFMcdymAG8kE6YHA2JGDs8HHFGab5oAEj36Yk_Mj6ebgxj2JeMSsd9j7cIDflSl4izEuVd_nJgRiaSEm8nCaPM4JbXKWbIefTz92jsAw-NNFcdbDEPHyz3te3H_8cH_zubz78un2ZntX2vyJVHLOlG6btkEuuGo6UdW8AxDYix44q1urLa-gA9W1QrdMQs9qrSupNFRZOi_erm3ziN9mjMkcXLQ4DDCin6NplG64popl8s0_5KOfw5hnM5xLrWoqaZ2p65Xaw4DGjb3P27P5dJj35kfsXda3QslKSqFVNrx7ZshMwu9pD3OM5nb39TnLVnYJIAbszRTcAcLJMGqWkM0asskhmyVkU2UPXz1xWtLB8Hfs_5t-ARk0qzs</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>García-Infanta, J. M.</creator><creator>Zhilyaev, A. P.</creator><creator>Carreño, F.</creator><creator>Ruano, O. A.</creator><creator>Su, J. Q.</creator><creator>Menon, S. K.</creator><creator>McNelley, T. R.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100901</creationdate><title>Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy</title><author>García-Infanta, J. M. ; Zhilyaev, A. P. ; Carreño, F. ; Ruano, O. A. ; Su, J. Q. ; Menon, S. K. ; McNelley, T. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Ambient temperature</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Constituents</topic><topic>Crystallography and Scattering Methods</topic><topic>Deformation</topic><topic>Dendritic structure</topic><topic>Equal channel angular pressing</topic><topic>Eutectic temperature</topic><topic>Eutectics</topic><topic>Evolution</topic><topic>Friction stir processing</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Polymer Sciences</topic><topic>Redundant</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Strain</topic><topic>Thermomechanical properties</topic><topic>Ultrafine Grained Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Infanta, J. M.</creatorcontrib><creatorcontrib>Zhilyaev, A. P.</creatorcontrib><creatorcontrib>Carreño, F.</creatorcontrib><creatorcontrib>Ruano, O. A.</creatorcontrib><creatorcontrib>Su, J. Q.</creatorcontrib><creatorcontrib>Menon, S. K.</creatorcontrib><creatorcontrib>McNelley, T. R.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Infanta, J. M.</au><au>Zhilyaev, A. P.</au><au>Carreño, F.</au><au>Ruano, O. A.</au><au>Su, J. Q.</au><au>Menon, S. K.</au><au>McNelley, T. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>45</volume><issue>17</issue><spage>4613</spage><epage>4620</epage><pages>4613-4620</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Microstructure evolution in an as-cast Na modified Al–7%Si (wt. pct.) alloy was examined during redundant and monotonic straining by repetitive equi-channel angular pressing (ECAP) under ambient temperature conditions, and during friction stir processing (FSP). Redundant straining during repetitive ECAP was accomplished by processing following route B
C
while monotonic straining employed route A. Single- and multi-pass FSP was conducted on this same as-cast material using an FSP tool having a threaded pin. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The evolution of this microstructure during repetitive ECAP can be described by idealized models of this process. The primary and eutectic constituents can still be discerned and the Si particle distribution is not homogenized even during ambient temperature processing involving von Mises strains >9.0. In contrast, the primary and eutectic constituents cannot be distinguished in the stir zone after even a single FSP pass. Strain estimates based on the shape change of the primary α constituent indicate that the Si particle distribution has become homogeneous at local von Mises strains of 2.5–3.0 during the FSP thermomechanical cycle. Mechanical property data are consistent with strain path during SPD processing by repetitive ECAP and FSP.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-010-4530-4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2010-09, Vol.45 (17), p.4613-4620 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_869829061 |
source | Springer Nature |
subjects | Alloys Aluminum base alloys Ambient temperature Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Constituents Crystallography and Scattering Methods Deformation Dendritic structure Equal channel angular pressing Eutectic temperature Eutectics Evolution Friction stir processing Intermetallic compounds Materials Science Microstructure Polymer Sciences Redundant Solid Mechanics Specialty metals industry Strain Thermomechanical properties Ultrafine Grained Materials |
title | Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20path%20and%20microstructure%20evolution%20during%20severe%20deformation%20processing%20of%20an%20as-cast%20hypoeutectic%20Al%E2%80%93Si%20alloy&rft.jtitle=Journal%20of%20materials%20science&rft.au=Garc%C3%ADa-Infanta,%20J.%20M.&rft.date=2010-09-01&rft.volume=45&rft.issue=17&rft.spage=4613&rft.epage=4620&rft.pages=4613-4620&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-010-4530-4&rft_dat=%3Cgale_proqu%3EA365455396%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-22169b8b8e23268d3472daa3ef3fa217bc9c24ada6db39b15af17994569a4db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259670507&rft_id=info:pmid/&rft_galeid=A365455396&rfr_iscdi=true |