Loading…

Total internal reflection ellipsometry as a label-free assessment method for optimization of the reactive surface of bioassay devices based on a functionalized cycloolefin polymer

We report a label-free optical detection technique, called total internal reflection ellipsometry (TIRE), which can be applied to study the interactions between biomolecules and a functionalized polymer surface. Zeonor (ZR), a cycloolefin polymer with low autofluorescence, high optical transmittance...

Full description

Saved in:
Bibliographic Details
Published in:Analytical & bioanalytical chemistry (Print) 2010-11, Vol.398 (5), p.1927-1936
Main Authors: Le, Nam Cao Hoai, Gubala, Vladimir, Gandhiraman, Ram P, Coyle, Conor, Daniels, Stephen, Williams, David E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a label-free optical detection technique, called total internal reflection ellipsometry (TIRE), which can be applied to study the interactions between biomolecules and a functionalized polymer surface. Zeonor (ZR), a cycloolefin polymer with low autofluorescence, high optical transmittance and excellent chemical resistance, is a highly suitable material for optical biosensor platforms owing to the ease of fabrication. It can also be modified with a range of reactive chemical groups for surface functionalization. We demonstrate the applications of TIRE in monitoring DNA hybridization assays and human chorionic gonadotrophin sandwich immunoassays on the ZR surface functionalized with carboxyl groups. The Ψ and Δ spectra obtained after the binding of each layer of analyte have been fitted to a four-layer ellipsometric model to quantitatively determine the amount of analytes bound specifically to the functionalized ZR surface. Our proposed TIRE technique with its very low analyte consumption and its microfluidic array format could be a useful tool for evaluating several crucial parameters in immunoassays, DNA interactions, adsorption of biomolecules to solid surfaces, or assessment of the reactivity of a functionalized polymer surface towards a specific analyte. [graphic removed]
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-010-4099-4