Loading…

Docking and molecular dynamics studies on CYP2D6

Drug-metabolizing enzymes, also known as cytochrome P450s, are a superfamily of hemoglobin responsible for metabolizing more than 90% clinical drugs. Cytochrome P450 2D6 (CYP2D6) is a significant member of cytochrome P450s for the reason of metabolizing about 20% clinical drugs. In this paper, molec...

Full description

Saved in:
Bibliographic Details
Published in:Chinese science bulletin 2010-06, Vol.55 (18), p.1877-1880
Main Authors: Wang, JingFang, Zhang, ChengCheng, Wei, DongQing, Li, YiXue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drug-metabolizing enzymes, also known as cytochrome P450s, are a superfamily of hemoglobin responsible for metabolizing more than 90% clinical drugs. Cytochrome P450 2D6 (CYP2D6) is a significant member of cytochrome P450s for the reason of metabolizing about 20% clinical drugs. In this paper, molecular docking and molecular dynamic simulations are used to investi- gate the active site of CYP2D6, roles of essential amino acids within the active site and time-dependent protein energy changes. The results suggest that amino acids Glu216, Asp301, Ser304 and Ala305 in the active site are likely to form hydrogen bonding interactions with substrates; the benzene ring of Phel20 and aromatic ring in the substrates form I-I-FI interactions. In addition, molecular dynamics simulations prove that the catalytic conformation of CYP2D6 without ligands can be obtained by their own atomic fluctuations. The impact of ligands on protein system energy and large conformational shift is not very large. Cytochrome P450s is known for their genetic polymorphisms, which will result in severe adverse drug reactions. Ideally, we hope to use mo- lecular modeling to investigate the differences between the substrates of wild-type and mutants while they are bonded with drugs, and predict the drug metabolizing ability of mutants. Reduce the possibility for people taking drugs that they can not metabolize, therefore reduce the rate of adverse drug reactions, and eventually establish a platform of personalized drugs to largely benefit human health.
ISSN:1001-6538
1861-9541
DOI:10.1007/s11434-009-3697-z