Loading…
Asymmetric encryption and signature method with DNA technology
This paper proposes DNA-PKC, an asymmetric encryption and signature cryptosystem by combining the technologies of genetic engineering and cryptology. It is an exploratory research of biological cryptology. Similar to conventional public-key cryptology, DNA-PKC uses two pairs of keys for encryption a...
Saved in:
Published in: | Science China. Information sciences 2010-03, Vol.53 (3), p.506-514 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes DNA-PKC, an asymmetric encryption and signature cryptosystem by combining the technologies of genetic engineering and cryptology. It is an exploratory research of biological cryptology. Similar to conventional public-key cryptology, DNA-PKC uses two pairs of keys for encryption and signature, respectively. Using the public encryption key, everyone can send encrypted message to a specified user, only the owner of the private decryption key can decrypt the ciphertext and recover the message; in the signature scheme, the owner of the private signing key can generate a signature that can be verified by other users with the public verification key, but no else can forge the signature. DNA-PKC differs from the conventional cryptology in that the keys and the ciphertexts are all biological molecules. The security of DNA-PKC relies on diffcult biological problems instead of computational problems; thus DNA-PKC is immune from known attacks, especially the quantum computing based attacks. |
---|---|
ISSN: | 1674-733X 1869-1919 |
DOI: | 10.1007/s11432-010-0063-3 |