Loading…
Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis
► ZnO:Cu nano particles are prepared via solution combustion technique with ODH fuel at low temperature. ► Analysis of X-ray line broadening and micro strain in nanoparticles are evaluated using W-H plots. ► PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure. ► Decrease i...
Saved in:
Published in: | Journal of alloys and compounds 2011-04, Vol.509 (17), p.5349-5355 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23 |
---|---|
cites | cdi_FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23 |
container_end_page | 5355 |
container_issue | 17 |
container_start_page | 5349 |
container_title | Journal of alloys and compounds |
container_volume | 509 |
creator | Reddy, A. Jagannatha Kokila, M.K. Nagabhushana, H. Chakradhar, R.P.S. Shivakumara, C. Rao, J.L. Nagabhushana, B.M. |
description | ► ZnO:Cu nano particles are prepared via solution combustion technique with ODH fuel at low temperature. ► Analysis of X-ray line broadening and micro strain in nanoparticles are evaluated using W-H plots. ► PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure. ► Decrease in the green emission and enhancement of UV emission in Cu doped ZnO due to the decrease in defects. ► EPR spectrum exhibits a broad resonance signal at
g
∼
2.049 and two narrow resonances one at
g
∼
1.990 and other at
g
∼
1.950.
Cu (0.1
mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300
°C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV–Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson–Hall (W–H) plots and Scherrer's formula is found to be in the range of ∼40
nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV–Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at
g
∼
2.049, and two narrow resonances one at
g
∼
1.990 and other at
g
∼
1.950. The broad resonance signal at
g
∼
2.049 is a characteristic of Cu
2+ ion whereas the signal at
g
∼
1.990 and
g
∼
1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (
N) and paramagnetic susceptibility (
χ) have been evaluated and discussed. |
doi_str_mv | 10.1016/j.jallcom.2011.02.043 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869835652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838811003604</els_id><sourcerecordid>869835652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhiNEJZa2PwHJF8SFhLGdTy4IrQqtVKkI6IWL5dgT4ZXXDh6nVf99s-yKK6eZw_sx8xTFGw4VB95-2FU77b2J-0oA5xWICmr5otjwvpNl3bbDy2IDg2jKXvb9q-I10Q4A-CD5psg_clpMXpL271mcszPaMx0su_r2nVFerENiMbBf4e7jdmFBhzjHR4uJ2Jxw1gkte3Ca-fjIMu5nTHoNQ0bRL9mtxvWscaG_Kz2F_BvJ0UVxNmlPeHma58X9l6uf2-vy9u7rzfbzbWlq2eVSguihNxpqY0Y5TFxPehraCRppxloO1lrojJ3EIGXbmbFrVp9oRIsS9DgKeV68O-bOKf5ZkLLaOzLovQ4YF1J9O_SyaZuDsjkqTYpECSc1J7fX6UlxUAfIaqdOkNUBsgKhVsir7-2pQdNKbko6GEf_zKIGyUEcdJ-OOlzffXCYFBmHwaB1CU1WNrr_ND0D4a-XzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869835652</pqid></control><display><type>article</type><title>Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Reddy, A. Jagannatha ; Kokila, M.K. ; Nagabhushana, H. ; Chakradhar, R.P.S. ; Shivakumara, C. ; Rao, J.L. ; Nagabhushana, B.M.</creator><creatorcontrib>Reddy, A. Jagannatha ; Kokila, M.K. ; Nagabhushana, H. ; Chakradhar, R.P.S. ; Shivakumara, C. ; Rao, J.L. ; Nagabhushana, B.M.</creatorcontrib><description>► ZnO:Cu nano particles are prepared via solution combustion technique with ODH fuel at low temperature. ► Analysis of X-ray line broadening and micro strain in nanoparticles are evaluated using W-H plots. ► PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure. ► Decrease in the green emission and enhancement of UV emission in Cu doped ZnO due to the decrease in defects. ► EPR spectrum exhibits a broad resonance signal at
g
∼
2.049 and two narrow resonances one at
g
∼
1.990 and other at
g
∼
1.950.
Cu (0.1
mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300
°C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV–Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson–Hall (W–H) plots and Scherrer's formula is found to be in the range of ∼40
nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV–Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at
g
∼
2.049, and two narrow resonances one at
g
∼
1.990 and other at
g
∼
1.950. The broad resonance signal at
g
∼
2.049 is a characteristic of Cu
2+ ion whereas the signal at
g
∼
1.990 and
g
∼
1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (
N) and paramagnetic susceptibility (
χ) have been evaluated and discussed.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2011.02.043</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>COMBUSTION ; Combustion synthesis ; COMPOSITES ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Copper ; Electron paramagnetic resonance and relaxation ; EPR ; Exact sciences and technology ; FABRICATION ; Magnetic resonances and relaxations in condensed matter, mössbauer effect ; MICROSTRUCTURES ; Nanocomposites ; Nanocrystals and nanoparticles ; Nanomaterials ; Nanopowder ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Nanostructure ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; PARTICLE SIZE AND SHAPE ; Photoluminescence ; Physics ; POWDERS ; SCANNING ELECTRON MICROSCOPY ; SEM ; Structure of solids and liquids; crystallography ; TEM ; TRANSMISSION ELECTRON MICROSCOPY ; UV–Vis ; XRD ; ZINC OXIDE ; ZnO</subject><ispartof>Journal of alloys and compounds, 2011-04, Vol.509 (17), p.5349-5355</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23</citedby><cites>FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24031023$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reddy, A. Jagannatha</creatorcontrib><creatorcontrib>Kokila, M.K.</creatorcontrib><creatorcontrib>Nagabhushana, H.</creatorcontrib><creatorcontrib>Chakradhar, R.P.S.</creatorcontrib><creatorcontrib>Shivakumara, C.</creatorcontrib><creatorcontrib>Rao, J.L.</creatorcontrib><creatorcontrib>Nagabhushana, B.M.</creatorcontrib><title>Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis</title><title>Journal of alloys and compounds</title><description>► ZnO:Cu nano particles are prepared via solution combustion technique with ODH fuel at low temperature. ► Analysis of X-ray line broadening and micro strain in nanoparticles are evaluated using W-H plots. ► PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure. ► Decrease in the green emission and enhancement of UV emission in Cu doped ZnO due to the decrease in defects. ► EPR spectrum exhibits a broad resonance signal at
g
∼
2.049 and two narrow resonances one at
g
∼
1.990 and other at
g
∼
1.950.
Cu (0.1
mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300
°C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV–Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson–Hall (W–H) plots and Scherrer's formula is found to be in the range of ∼40
nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV–Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at
g
∼
2.049, and two narrow resonances one at
g
∼
1.990 and other at
g
∼
1.950. The broad resonance signal at
g
∼
2.049 is a characteristic of Cu
2+ ion whereas the signal at
g
∼
1.990 and
g
∼
1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (
N) and paramagnetic susceptibility (
χ) have been evaluated and discussed.</description><subject>COMBUSTION</subject><subject>Combustion synthesis</subject><subject>COMPOSITES</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Copper</subject><subject>Electron paramagnetic resonance and relaxation</subject><subject>EPR</subject><subject>Exact sciences and technology</subject><subject>FABRICATION</subject><subject>Magnetic resonances and relaxations in condensed matter, mössbauer effect</subject><subject>MICROSTRUCTURES</subject><subject>Nanocomposites</subject><subject>Nanocrystals and nanoparticles</subject><subject>Nanomaterials</subject><subject>Nanopowder</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Nanostructure</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>PARTICLE SIZE AND SHAPE</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>POWDERS</subject><subject>SCANNING ELECTRON MICROSCOPY</subject><subject>SEM</subject><subject>Structure of solids and liquids; crystallography</subject><subject>TEM</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>UV–Vis</subject><subject>XRD</subject><subject>ZINC OXIDE</subject><subject>ZnO</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhiNEJZa2PwHJF8SFhLGdTy4IrQqtVKkI6IWL5dgT4ZXXDh6nVf99s-yKK6eZw_sx8xTFGw4VB95-2FU77b2J-0oA5xWICmr5otjwvpNl3bbDy2IDg2jKXvb9q-I10Q4A-CD5psg_clpMXpL271mcszPaMx0su_r2nVFerENiMbBf4e7jdmFBhzjHR4uJ2Jxw1gkte3Ca-fjIMu5nTHoNQ0bRL9mtxvWscaG_Kz2F_BvJ0UVxNmlPeHma58X9l6uf2-vy9u7rzfbzbWlq2eVSguihNxpqY0Y5TFxPehraCRppxloO1lrojJ3EIGXbmbFrVp9oRIsS9DgKeV68O-bOKf5ZkLLaOzLovQ4YF1J9O_SyaZuDsjkqTYpECSc1J7fX6UlxUAfIaqdOkNUBsgKhVsir7-2pQdNKbko6GEf_zKIGyUEcdJ-OOlzffXCYFBmHwaB1CU1WNrr_ND0D4a-XzA</recordid><startdate>20110428</startdate><enddate>20110428</enddate><creator>Reddy, A. Jagannatha</creator><creator>Kokila, M.K.</creator><creator>Nagabhushana, H.</creator><creator>Chakradhar, R.P.S.</creator><creator>Shivakumara, C.</creator><creator>Rao, J.L.</creator><creator>Nagabhushana, B.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20110428</creationdate><title>Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis</title><author>Reddy, A. Jagannatha ; Kokila, M.K. ; Nagabhushana, H. ; Chakradhar, R.P.S. ; Shivakumara, C. ; Rao, J.L. ; Nagabhushana, B.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>COMBUSTION</topic><topic>Combustion synthesis</topic><topic>COMPOSITES</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Copper</topic><topic>Electron paramagnetic resonance and relaxation</topic><topic>EPR</topic><topic>Exact sciences and technology</topic><topic>FABRICATION</topic><topic>Magnetic resonances and relaxations in condensed matter, mössbauer effect</topic><topic>MICROSTRUCTURES</topic><topic>Nanocomposites</topic><topic>Nanocrystals and nanoparticles</topic><topic>Nanomaterials</topic><topic>Nanopowder</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Nanostructure</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>PARTICLE SIZE AND SHAPE</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>POWDERS</topic><topic>SCANNING ELECTRON MICROSCOPY</topic><topic>SEM</topic><topic>Structure of solids and liquids; crystallography</topic><topic>TEM</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>UV–Vis</topic><topic>XRD</topic><topic>ZINC OXIDE</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, A. Jagannatha</creatorcontrib><creatorcontrib>Kokila, M.K.</creatorcontrib><creatorcontrib>Nagabhushana, H.</creatorcontrib><creatorcontrib>Chakradhar, R.P.S.</creatorcontrib><creatorcontrib>Shivakumara, C.</creatorcontrib><creatorcontrib>Rao, J.L.</creatorcontrib><creatorcontrib>Nagabhushana, B.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, A. Jagannatha</au><au>Kokila, M.K.</au><au>Nagabhushana, H.</au><au>Chakradhar, R.P.S.</au><au>Shivakumara, C.</au><au>Rao, J.L.</au><au>Nagabhushana, B.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2011-04-28</date><risdate>2011</risdate><volume>509</volume><issue>17</issue><spage>5349</spage><epage>5355</epage><pages>5349-5355</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>► ZnO:Cu nano particles are prepared via solution combustion technique with ODH fuel at low temperature. ► Analysis of X-ray line broadening and micro strain in nanoparticles are evaluated using W-H plots. ► PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure. ► Decrease in the green emission and enhancement of UV emission in Cu doped ZnO due to the decrease in defects. ► EPR spectrum exhibits a broad resonance signal at
g
∼
2.049 and two narrow resonances one at
g
∼
1.990 and other at
g
∼
1.950.
Cu (0.1
mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300
°C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV–Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson–Hall (W–H) plots and Scherrer's formula is found to be in the range of ∼40
nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV–Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at
g
∼
2.049, and two narrow resonances one at
g
∼
1.990 and other at
g
∼
1.950. The broad resonance signal at
g
∼
2.049 is a characteristic of Cu
2+ ion whereas the signal at
g
∼
1.990 and
g
∼
1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (
N) and paramagnetic susceptibility (
χ) have been evaluated and discussed.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2011.02.043</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2011-04, Vol.509 (17), p.5349-5355 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_miscellaneous_869835652 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | COMBUSTION Combustion synthesis COMPOSITES Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Copper Electron paramagnetic resonance and relaxation EPR Exact sciences and technology FABRICATION Magnetic resonances and relaxations in condensed matter, mössbauer effect MICROSTRUCTURES Nanocomposites Nanocrystals and nanoparticles Nanomaterials Nanopowder Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals Nanostructure Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures PARTICLE SIZE AND SHAPE Photoluminescence Physics POWDERS SCANNING ELECTRON MICROSCOPY SEM Structure of solids and liquids crystallography TEM TRANSMISSION ELECTRON MICROSCOPY UV–Vis XRD ZINC OXIDE ZnO |
title | Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20optical%20and%20EPR%20studies%20on%20ZnO:Cu%20nanopowders%20prepared%20via%20low%20temperature%20solution%20combustion%20synthesis&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Reddy,%20A.%20Jagannatha&rft.date=2011-04-28&rft.volume=509&rft.issue=17&rft.spage=5349&rft.epage=5355&rft.pages=5349-5355&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2011.02.043&rft_dat=%3Cproquest_cross%3E869835652%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=869835652&rft_id=info:pmid/&rfr_iscdi=true |