Loading…

Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis

► ZnO:Cu nano particles are prepared via solution combustion technique with ODH fuel at low temperature. ► Analysis of X-ray line broadening and micro strain in nanoparticles are evaluated using W-H plots. ► PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure. ► Decrease i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2011-04, Vol.509 (17), p.5349-5355
Main Authors: Reddy, A. Jagannatha, Kokila, M.K., Nagabhushana, H., Chakradhar, R.P.S., Shivakumara, C., Rao, J.L., Nagabhushana, B.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23
cites cdi_FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23
container_end_page 5355
container_issue 17
container_start_page 5349
container_title Journal of alloys and compounds
container_volume 509
creator Reddy, A. Jagannatha
Kokila, M.K.
Nagabhushana, H.
Chakradhar, R.P.S.
Shivakumara, C.
Rao, J.L.
Nagabhushana, B.M.
description ► ZnO:Cu nano particles are prepared via solution combustion technique with ODH fuel at low temperature. ► Analysis of X-ray line broadening and micro strain in nanoparticles are evaluated using W-H plots. ► PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure. ► Decrease in the green emission and enhancement of UV emission in Cu doped ZnO due to the decrease in defects. ► EPR spectrum exhibits a broad resonance signal at g ∼ 2.049 and two narrow resonances one at g ∼ 1.990 and other at g ∼ 1.950. Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 °C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV–Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson–Hall (W–H) plots and Scherrer's formula is found to be in the range of ∼40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV–Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g ∼ 2.049, and two narrow resonances one at g ∼ 1.990 and other at g ∼ 1.950. The broad resonance signal at g ∼ 2.049 is a characteristic of Cu 2+ ion whereas the signal at g ∼ 1.990 and g ∼ 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration ( N) and paramagnetic susceptibility ( χ) have been evaluated and discussed.
doi_str_mv 10.1016/j.jallcom.2011.02.043
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869835652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838811003604</els_id><sourcerecordid>869835652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhiNEJZa2PwHJF8SFhLGdTy4IrQqtVKkI6IWL5dgT4ZXXDh6nVf99s-yKK6eZw_sx8xTFGw4VB95-2FU77b2J-0oA5xWICmr5otjwvpNl3bbDy2IDg2jKXvb9q-I10Q4A-CD5psg_clpMXpL271mcszPaMx0su_r2nVFerENiMbBf4e7jdmFBhzjHR4uJ2Jxw1gkte3Ca-fjIMu5nTHoNQ0bRL9mtxvWscaG_Kz2F_BvJ0UVxNmlPeHma58X9l6uf2-vy9u7rzfbzbWlq2eVSguihNxpqY0Y5TFxPehraCRppxloO1lrojJ3EIGXbmbFrVp9oRIsS9DgKeV68O-bOKf5ZkLLaOzLovQ4YF1J9O_SyaZuDsjkqTYpECSc1J7fX6UlxUAfIaqdOkNUBsgKhVsir7-2pQdNKbko6GEf_zKIGyUEcdJ-OOlzffXCYFBmHwaB1CU1WNrr_ND0D4a-XzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869835652</pqid></control><display><type>article</type><title>Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Reddy, A. Jagannatha ; Kokila, M.K. ; Nagabhushana, H. ; Chakradhar, R.P.S. ; Shivakumara, C. ; Rao, J.L. ; Nagabhushana, B.M.</creator><creatorcontrib>Reddy, A. Jagannatha ; Kokila, M.K. ; Nagabhushana, H. ; Chakradhar, R.P.S. ; Shivakumara, C. ; Rao, J.L. ; Nagabhushana, B.M.</creatorcontrib><description>► ZnO:Cu nano particles are prepared via solution combustion technique with ODH fuel at low temperature. ► Analysis of X-ray line broadening and micro strain in nanoparticles are evaluated using W-H plots. ► PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure. ► Decrease in the green emission and enhancement of UV emission in Cu doped ZnO due to the decrease in defects. ► EPR spectrum exhibits a broad resonance signal at g ∼ 2.049 and two narrow resonances one at g ∼ 1.990 and other at g ∼ 1.950. Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 °C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV–Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson–Hall (W–H) plots and Scherrer's formula is found to be in the range of ∼40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV–Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g ∼ 2.049, and two narrow resonances one at g ∼ 1.990 and other at g ∼ 1.950. The broad resonance signal at g ∼ 2.049 is a characteristic of Cu 2+ ion whereas the signal at g ∼ 1.990 and g ∼ 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration ( N) and paramagnetic susceptibility ( χ) have been evaluated and discussed.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2011.02.043</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>COMBUSTION ; Combustion synthesis ; COMPOSITES ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Copper ; Electron paramagnetic resonance and relaxation ; EPR ; Exact sciences and technology ; FABRICATION ; Magnetic resonances and relaxations in condensed matter, mössbauer effect ; MICROSTRUCTURES ; Nanocomposites ; Nanocrystals and nanoparticles ; Nanomaterials ; Nanopowder ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Nanostructure ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; PARTICLE SIZE AND SHAPE ; Photoluminescence ; Physics ; POWDERS ; SCANNING ELECTRON MICROSCOPY ; SEM ; Structure of solids and liquids; crystallography ; TEM ; TRANSMISSION ELECTRON MICROSCOPY ; UV–Vis ; XRD ; ZINC OXIDE ; ZnO</subject><ispartof>Journal of alloys and compounds, 2011-04, Vol.509 (17), p.5349-5355</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23</citedby><cites>FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24031023$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reddy, A. Jagannatha</creatorcontrib><creatorcontrib>Kokila, M.K.</creatorcontrib><creatorcontrib>Nagabhushana, H.</creatorcontrib><creatorcontrib>Chakradhar, R.P.S.</creatorcontrib><creatorcontrib>Shivakumara, C.</creatorcontrib><creatorcontrib>Rao, J.L.</creatorcontrib><creatorcontrib>Nagabhushana, B.M.</creatorcontrib><title>Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis</title><title>Journal of alloys and compounds</title><description>► ZnO:Cu nano particles are prepared via solution combustion technique with ODH fuel at low temperature. ► Analysis of X-ray line broadening and micro strain in nanoparticles are evaluated using W-H plots. ► PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure. ► Decrease in the green emission and enhancement of UV emission in Cu doped ZnO due to the decrease in defects. ► EPR spectrum exhibits a broad resonance signal at g ∼ 2.049 and two narrow resonances one at g ∼ 1.990 and other at g ∼ 1.950. Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 °C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV–Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson–Hall (W–H) plots and Scherrer's formula is found to be in the range of ∼40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV–Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g ∼ 2.049, and two narrow resonances one at g ∼ 1.990 and other at g ∼ 1.950. The broad resonance signal at g ∼ 2.049 is a characteristic of Cu 2+ ion whereas the signal at g ∼ 1.990 and g ∼ 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration ( N) and paramagnetic susceptibility ( χ) have been evaluated and discussed.</description><subject>COMBUSTION</subject><subject>Combustion synthesis</subject><subject>COMPOSITES</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Copper</subject><subject>Electron paramagnetic resonance and relaxation</subject><subject>EPR</subject><subject>Exact sciences and technology</subject><subject>FABRICATION</subject><subject>Magnetic resonances and relaxations in condensed matter, mössbauer effect</subject><subject>MICROSTRUCTURES</subject><subject>Nanocomposites</subject><subject>Nanocrystals and nanoparticles</subject><subject>Nanomaterials</subject><subject>Nanopowder</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Nanostructure</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>PARTICLE SIZE AND SHAPE</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>POWDERS</subject><subject>SCANNING ELECTRON MICROSCOPY</subject><subject>SEM</subject><subject>Structure of solids and liquids; crystallography</subject><subject>TEM</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>UV–Vis</subject><subject>XRD</subject><subject>ZINC OXIDE</subject><subject>ZnO</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhiNEJZa2PwHJF8SFhLGdTy4IrQqtVKkI6IWL5dgT4ZXXDh6nVf99s-yKK6eZw_sx8xTFGw4VB95-2FU77b2J-0oA5xWICmr5otjwvpNl3bbDy2IDg2jKXvb9q-I10Q4A-CD5psg_clpMXpL271mcszPaMx0su_r2nVFerENiMbBf4e7jdmFBhzjHR4uJ2Jxw1gkte3Ca-fjIMu5nTHoNQ0bRL9mtxvWscaG_Kz2F_BvJ0UVxNmlPeHma58X9l6uf2-vy9u7rzfbzbWlq2eVSguihNxpqY0Y5TFxPehraCRppxloO1lrojJ3EIGXbmbFrVp9oRIsS9DgKeV68O-bOKf5ZkLLaOzLovQ4YF1J9O_SyaZuDsjkqTYpECSc1J7fX6UlxUAfIaqdOkNUBsgKhVsir7-2pQdNKbko6GEf_zKIGyUEcdJ-OOlzffXCYFBmHwaB1CU1WNrr_ND0D4a-XzA</recordid><startdate>20110428</startdate><enddate>20110428</enddate><creator>Reddy, A. Jagannatha</creator><creator>Kokila, M.K.</creator><creator>Nagabhushana, H.</creator><creator>Chakradhar, R.P.S.</creator><creator>Shivakumara, C.</creator><creator>Rao, J.L.</creator><creator>Nagabhushana, B.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20110428</creationdate><title>Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis</title><author>Reddy, A. Jagannatha ; Kokila, M.K. ; Nagabhushana, H. ; Chakradhar, R.P.S. ; Shivakumara, C. ; Rao, J.L. ; Nagabhushana, B.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>COMBUSTION</topic><topic>Combustion synthesis</topic><topic>COMPOSITES</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Copper</topic><topic>Electron paramagnetic resonance and relaxation</topic><topic>EPR</topic><topic>Exact sciences and technology</topic><topic>FABRICATION</topic><topic>Magnetic resonances and relaxations in condensed matter, mössbauer effect</topic><topic>MICROSTRUCTURES</topic><topic>Nanocomposites</topic><topic>Nanocrystals and nanoparticles</topic><topic>Nanomaterials</topic><topic>Nanopowder</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Nanostructure</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>PARTICLE SIZE AND SHAPE</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>POWDERS</topic><topic>SCANNING ELECTRON MICROSCOPY</topic><topic>SEM</topic><topic>Structure of solids and liquids; crystallography</topic><topic>TEM</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>UV–Vis</topic><topic>XRD</topic><topic>ZINC OXIDE</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, A. Jagannatha</creatorcontrib><creatorcontrib>Kokila, M.K.</creatorcontrib><creatorcontrib>Nagabhushana, H.</creatorcontrib><creatorcontrib>Chakradhar, R.P.S.</creatorcontrib><creatorcontrib>Shivakumara, C.</creatorcontrib><creatorcontrib>Rao, J.L.</creatorcontrib><creatorcontrib>Nagabhushana, B.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, A. Jagannatha</au><au>Kokila, M.K.</au><au>Nagabhushana, H.</au><au>Chakradhar, R.P.S.</au><au>Shivakumara, C.</au><au>Rao, J.L.</au><au>Nagabhushana, B.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2011-04-28</date><risdate>2011</risdate><volume>509</volume><issue>17</issue><spage>5349</spage><epage>5355</epage><pages>5349-5355</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>► ZnO:Cu nano particles are prepared via solution combustion technique with ODH fuel at low temperature. ► Analysis of X-ray line broadening and micro strain in nanoparticles are evaluated using W-H plots. ► PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure. ► Decrease in the green emission and enhancement of UV emission in Cu doped ZnO due to the decrease in defects. ► EPR spectrum exhibits a broad resonance signal at g ∼ 2.049 and two narrow resonances one at g ∼ 1.990 and other at g ∼ 1.950. Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 °C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV–Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson–Hall (W–H) plots and Scherrer's formula is found to be in the range of ∼40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV–Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g ∼ 2.049, and two narrow resonances one at g ∼ 1.990 and other at g ∼ 1.950. The broad resonance signal at g ∼ 2.049 is a characteristic of Cu 2+ ion whereas the signal at g ∼ 1.990 and g ∼ 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration ( N) and paramagnetic susceptibility ( χ) have been evaluated and discussed.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2011.02.043</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2011-04, Vol.509 (17), p.5349-5355
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_869835652
source ScienceDirect Freedom Collection 2022-2024
subjects COMBUSTION
Combustion synthesis
COMPOSITES
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Copper
Electron paramagnetic resonance and relaxation
EPR
Exact sciences and technology
FABRICATION
Magnetic resonances and relaxations in condensed matter, mössbauer effect
MICROSTRUCTURES
Nanocomposites
Nanocrystals and nanoparticles
Nanomaterials
Nanopowder
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Nanostructure
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
PARTICLE SIZE AND SHAPE
Photoluminescence
Physics
POWDERS
SCANNING ELECTRON MICROSCOPY
SEM
Structure of solids and liquids
crystallography
TEM
TRANSMISSION ELECTRON MICROSCOPY
UV–Vis
XRD
ZINC OXIDE
ZnO
title Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20optical%20and%20EPR%20studies%20on%20ZnO:Cu%20nanopowders%20prepared%20via%20low%20temperature%20solution%20combustion%20synthesis&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Reddy,%20A.%20Jagannatha&rft.date=2011-04-28&rft.volume=509&rft.issue=17&rft.spage=5349&rft.epage=5355&rft.pages=5349-5355&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2011.02.043&rft_dat=%3Cproquest_cross%3E869835652%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-302808ca04ccb39f1afaf96f053cb439ddd07cdf293367cb75c432526e30abb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=869835652&rft_id=info:pmid/&rfr_iscdi=true