Loading…

GMR sensors: Magnetoresistive behaviour optimization for biological detection by means of superparamagnetic nanoparticles

An immunomagnetic method for the selective and quantitative detection of biological species by means of a magnetoresistive biosensor and superparamagnetic particles has been optimized. In order to achieve this, a giant magnetoresistive [Co (5.10 nm)/Cu (2.47 nm)] 20 multilayer structure has been cho...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2011-04, Vol.26 (8), p.3705-3709
Main Authors: Manteca, A., Mujika, M., Arana, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An immunomagnetic method for the selective and quantitative detection of biological species by means of a magnetoresistive biosensor and superparamagnetic particles has been optimized. In order to achieve this, a giant magnetoresistive [Co (5.10 nm)/Cu (2.47 nm)] 20 multilayer structure has been chosen as the sensitive material, showing a magnetoresistance of 3.60% at 215 Oe and a sensitivity up to 0.19 Ω/Oe between 145 Oe and 350 Oe. The outward gold surface of the sensor is biofunctionalized with a Self-Assembled Monolayer (SAM). In addition, three different types of magnetic labels have been tested. 2 μm diameter magnetic carriers (7.68 pg ferrite/particle) have shown the best response and they have induced a shift in the magnetoresistive hysteresis loops up to 9% at 175 Oe.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2011.02.013