Loading…

Internal void closure during the forging of large cast ingots using a simulation approach

Large cast ingots often contain defects or undesirable microstructural features, such as voids and zones related to casting. Some of these features can remain after hot open die forging, which is an important process for converting large cast ingots into wrought components. During the initial coggin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials processing technology 2011-06, Vol.211 (6), p.1136-1145
Main Authors: Lee, Y.S., Lee, S.U., Van Tyne, C.J., Joo, B.D., Moon, Y.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large cast ingots often contain defects or undesirable microstructural features, such as voids and zones related to casting. Some of these features can remain after hot open die forging, which is an important process for converting large cast ingots into wrought components. During the initial cogging and deformation steps prior to the detailed open-die-forging operations, any internal voids should be eliminated. The present work focuses on the closure of internal voids during open die forging so as to produce a sound component. Hot compression tests were conducted to obtain the flow strength of the cast microstructure at different temperatures and strain rates. The measured flow strength data together with other appropriate material properties were used to simulate the forging steps for a large cast ingot. The numerical simulations for the forging deformation and for the internal void behavior were performed using DEFORM-3D™. Actual defects were measured in commercial ingots with an X-ray scanner. The simulation results for the void deformation behavior are compared with voids measured before and after forging. Through the comparison of experimental results and numerical simulation, a criterion for void closure is proposed. The criterion is that a local effective strain value of 0.6 or greater must be achieved for void closure during forging. Such a criterion can be used in conjunction with simulations to insure that a sound component is produced during the hot open die forging of large cast ingots.
ISSN:0924-0136
DOI:10.1016/j.jmatprotec.2011.01.017