Loading…

Simulation of the Cygnus Rod-Pinch Diode Using the Radiographic Chain Model

The Cygnus radiographic machine is a relatively compact low-energy (

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2009-04, Vol.37 (4), p.530-537
Main Authors: Kwan, T.J.T., Berninger, M., Snell, C., Wang, T.-S.F., Lin Yin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-bc836b6991c98de3513ad1cc9b0018763bcfa8013b58b2e1f9931ad8f9a560183
cites cdi_FETCH-LOGICAL-c425t-bc836b6991c98de3513ad1cc9b0018763bcfa8013b58b2e1f9931ad8f9a560183
container_end_page 537
container_issue 4
container_start_page 530
container_title IEEE transactions on plasma science
container_volume 37
creator Kwan, T.J.T.
Berninger, M.
Snell, C.
Wang, T.-S.F.
Lin Yin
description The Cygnus radiographic machine is a relatively compact low-energy (
doi_str_mv 10.1109/TPS.2009.2014767
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_869844973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4799200</ieee_id><sourcerecordid>1678321211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-bc836b6991c98de3513ad1cc9b0018763bcfa8013b58b2e1f9931ad8f9a560183</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhi0EEqWwI7FESMAUsOPY8Y0ofIoiqn7MluM4ras0LnEz9N_j0qoDA8vdcM-9utOD0CXB94RgeJgMx_cJxhAKSTOeHaEeAQox0Iwdo16Y0JgKQk_RmfcLHCCGkx76GNtlV6u1dU3kqmg9N1G-mTWdj0aujIe20fPoybrSRFNvm9kvMFKldbNWreZWR_lc2Sb6DER9jk4qVXtzse99NH15nuRv8eDr9T1_HMQ6Tdg6LrSgvOAARIMoDWWEqpJoDUW4SmScFrpSAhNaMFEkhlQAlKhSVKAYDwTto7td7qp1353xa7m0Xpu6Vo1xnZeCg0hTyGggb_8lacoo5ywN4PUfcOG6tglfSAKMCLKN6yO8g3TrvG9NJVetXap2IwmWWwkySJBbCXIvIazc7HOV16quWtVo6w97SbCQZXz70tWOs8aYwzjNAEIc_QExJ41r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195181497</pqid></control><display><type>article</type><title>Simulation of the Cygnus Rod-Pinch Diode Using the Radiographic Chain Model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kwan, T.J.T. ; Berninger, M. ; Snell, C. ; Wang, T.-S.F. ; Lin Yin</creator><creatorcontrib>Kwan, T.J.T. ; Berninger, M. ; Snell, C. ; Wang, T.-S.F. ; Lin Yin</creatorcontrib><description>The Cygnus radiographic machine is a relatively compact low-energy (&lt;3 MV) X-ray source with some extremely desirable features for radiographic applications. These features include small spot size, which is critical for high-spatial resolution, and high dose in a low-energy range. The X-ray source is based on bremsstrahlung production in a small-diameter (~0.75 mm) tungsten rod by a high-current (~60 kA) electron beam converging at the tip of the rod. For quantitative analysis of radiographic data, it is essential to determine the bremsstrahlung spectrum accurately. We have used the radiographic chain model to self-consistently model the diode with a 2-D particle-in-cell (PIC) code (Merlin) linked to an electron-photon Monte Carlo code to obtain the spectrum under three different situations: a steady-state spectrum using a voltage pulse of 2.25 MV, a time-integrated spectrum using a time-dependent experimental voltage pulse, and the spectrum resulting from inclusion of reflexing electrons around the anode rod in our PIC simulation. Detailed electron dynamics were obtained. We conclude that the time-integrated bremsstrahlung spectrum is significantly softer than that of the steady state. Including the effects of reflexing electrons using a Monte Carlo transport method in Merlin produced a spectrum in better agreement with experimental data.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2009.2014767</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Anodes ; Bremsstrahlung ; Chains ; Computer simulation ; Cygnus ; Data analysis ; diode ; Diodes ; Electron beams ; Electrons ; Exact sciences and technology ; flash radiography ; Laser-plasma interactions ; Monte Carlo methods ; Particle-in-cell method ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma properties ; Plasma simulation ; Production ; Radiography ; Simulation ; Steady state ; Transport properties ; Tungsten ; Voltage ; Voltage pulses ; X-ray sources ; X-ray, gamma-ray and particle generation ; X-rays</subject><ispartof>IEEE transactions on plasma science, 2009-04, Vol.37 (4), p.530-537</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-bc836b6991c98de3513ad1cc9b0018763bcfa8013b58b2e1f9931ad8f9a560183</citedby><cites>FETCH-LOGICAL-c425t-bc836b6991c98de3513ad1cc9b0018763bcfa8013b58b2e1f9931ad8f9a560183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4799200$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21457768$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwan, T.J.T.</creatorcontrib><creatorcontrib>Berninger, M.</creatorcontrib><creatorcontrib>Snell, C.</creatorcontrib><creatorcontrib>Wang, T.-S.F.</creatorcontrib><creatorcontrib>Lin Yin</creatorcontrib><title>Simulation of the Cygnus Rod-Pinch Diode Using the Radiographic Chain Model</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>The Cygnus radiographic machine is a relatively compact low-energy (&lt;3 MV) X-ray source with some extremely desirable features for radiographic applications. These features include small spot size, which is critical for high-spatial resolution, and high dose in a low-energy range. The X-ray source is based on bremsstrahlung production in a small-diameter (~0.75 mm) tungsten rod by a high-current (~60 kA) electron beam converging at the tip of the rod. For quantitative analysis of radiographic data, it is essential to determine the bremsstrahlung spectrum accurately. We have used the radiographic chain model to self-consistently model the diode with a 2-D particle-in-cell (PIC) code (Merlin) linked to an electron-photon Monte Carlo code to obtain the spectrum under three different situations: a steady-state spectrum using a voltage pulse of 2.25 MV, a time-integrated spectrum using a time-dependent experimental voltage pulse, and the spectrum resulting from inclusion of reflexing electrons around the anode rod in our PIC simulation. Detailed electron dynamics were obtained. We conclude that the time-integrated bremsstrahlung spectrum is significantly softer than that of the steady state. Including the effects of reflexing electrons using a Monte Carlo transport method in Merlin produced a spectrum in better agreement with experimental data.</description><subject>Anodes</subject><subject>Bremsstrahlung</subject><subject>Chains</subject><subject>Computer simulation</subject><subject>Cygnus</subject><subject>Data analysis</subject><subject>diode</subject><subject>Diodes</subject><subject>Electron beams</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>flash radiography</subject><subject>Laser-plasma interactions</subject><subject>Monte Carlo methods</subject><subject>Particle-in-cell method</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma properties</subject><subject>Plasma simulation</subject><subject>Production</subject><subject>Radiography</subject><subject>Simulation</subject><subject>Steady state</subject><subject>Transport properties</subject><subject>Tungsten</subject><subject>Voltage</subject><subject>Voltage pulses</subject><subject>X-ray sources</subject><subject>X-ray, gamma-ray and particle generation</subject><subject>X-rays</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kT1PwzAQhi0EEqWwI7FESMAUsOPY8Y0ofIoiqn7MluM4ras0LnEz9N_j0qoDA8vdcM-9utOD0CXB94RgeJgMx_cJxhAKSTOeHaEeAQox0Iwdo16Y0JgKQk_RmfcLHCCGkx76GNtlV6u1dU3kqmg9N1G-mTWdj0aujIe20fPoybrSRFNvm9kvMFKldbNWreZWR_lc2Sb6DER9jk4qVXtzse99NH15nuRv8eDr9T1_HMQ6Tdg6LrSgvOAARIMoDWWEqpJoDUW4SmScFrpSAhNaMFEkhlQAlKhSVKAYDwTto7td7qp1353xa7m0Xpu6Vo1xnZeCg0hTyGggb_8lacoo5ywN4PUfcOG6tglfSAKMCLKN6yO8g3TrvG9NJVetXap2IwmWWwkySJBbCXIvIazc7HOV16quWtVo6w97SbCQZXz70tWOs8aYwzjNAEIc_QExJ41r</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Kwan, T.J.T.</creator><creator>Berninger, M.</creator><creator>Snell, C.</creator><creator>Wang, T.-S.F.</creator><creator>Lin Yin</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090401</creationdate><title>Simulation of the Cygnus Rod-Pinch Diode Using the Radiographic Chain Model</title><author>Kwan, T.J.T. ; Berninger, M. ; Snell, C. ; Wang, T.-S.F. ; Lin Yin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-bc836b6991c98de3513ad1cc9b0018763bcfa8013b58b2e1f9931ad8f9a560183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anodes</topic><topic>Bremsstrahlung</topic><topic>Chains</topic><topic>Computer simulation</topic><topic>Cygnus</topic><topic>Data analysis</topic><topic>diode</topic><topic>Diodes</topic><topic>Electron beams</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>flash radiography</topic><topic>Laser-plasma interactions</topic><topic>Monte Carlo methods</topic><topic>Particle-in-cell method</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma properties</topic><topic>Plasma simulation</topic><topic>Production</topic><topic>Radiography</topic><topic>Simulation</topic><topic>Steady state</topic><topic>Transport properties</topic><topic>Tungsten</topic><topic>Voltage</topic><topic>Voltage pulses</topic><topic>X-ray sources</topic><topic>X-ray, gamma-ray and particle generation</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwan, T.J.T.</creatorcontrib><creatorcontrib>Berninger, M.</creatorcontrib><creatorcontrib>Snell, C.</creatorcontrib><creatorcontrib>Wang, T.-S.F.</creatorcontrib><creatorcontrib>Lin Yin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwan, T.J.T.</au><au>Berninger, M.</au><au>Snell, C.</au><au>Wang, T.-S.F.</au><au>Lin Yin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of the Cygnus Rod-Pinch Diode Using the Radiographic Chain Model</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>37</volume><issue>4</issue><spage>530</spage><epage>537</epage><pages>530-537</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>The Cygnus radiographic machine is a relatively compact low-energy (&lt;3 MV) X-ray source with some extremely desirable features for radiographic applications. These features include small spot size, which is critical for high-spatial resolution, and high dose in a low-energy range. The X-ray source is based on bremsstrahlung production in a small-diameter (~0.75 mm) tungsten rod by a high-current (~60 kA) electron beam converging at the tip of the rod. For quantitative analysis of radiographic data, it is essential to determine the bremsstrahlung spectrum accurately. We have used the radiographic chain model to self-consistently model the diode with a 2-D particle-in-cell (PIC) code (Merlin) linked to an electron-photon Monte Carlo code to obtain the spectrum under three different situations: a steady-state spectrum using a voltage pulse of 2.25 MV, a time-integrated spectrum using a time-dependent experimental voltage pulse, and the spectrum resulting from inclusion of reflexing electrons around the anode rod in our PIC simulation. Detailed electron dynamics were obtained. We conclude that the time-integrated bremsstrahlung spectrum is significantly softer than that of the steady state. Including the effects of reflexing electrons using a Monte Carlo transport method in Merlin produced a spectrum in better agreement with experimental data.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2009.2014767</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2009-04, Vol.37 (4), p.530-537
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_miscellaneous_869844973
source IEEE Electronic Library (IEL) Journals
subjects Anodes
Bremsstrahlung
Chains
Computer simulation
Cygnus
Data analysis
diode
Diodes
Electron beams
Electrons
Exact sciences and technology
flash radiography
Laser-plasma interactions
Monte Carlo methods
Particle-in-cell method
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma properties
Plasma simulation
Production
Radiography
Simulation
Steady state
Transport properties
Tungsten
Voltage
Voltage pulses
X-ray sources
X-ray, gamma-ray and particle generation
X-rays
title Simulation of the Cygnus Rod-Pinch Diode Using the Radiographic Chain Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20the%20Cygnus%20Rod-Pinch%20Diode%20Using%20the%20Radiographic%20Chain%20Model&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Kwan,%20T.J.T.&rft.date=2009-04-01&rft.volume=37&rft.issue=4&rft.spage=530&rft.epage=537&rft.pages=530-537&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2009.2014767&rft_dat=%3Cproquest_pasca%3E1678321211%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-bc836b6991c98de3513ad1cc9b0018763bcfa8013b58b2e1f9931ad8f9a560183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195181497&rft_id=info:pmid/&rft_ieee_id=4799200&rfr_iscdi=true