Loading…

Crack tip opening displacement of a Dugdale crack in a three-phase cylindrical model composite material

The analytical investigation of the plastic zone size of a crack in three-phase cylindrical model composite material was carried out. The physical problem is simulated as a crack near a circular inclusion (a single fiber) in the composite matrix, while the three-phase cylindrical composite model is...

Full description

Saved in:
Bibliographic Details
Published in:International journal of engineering science 2011-06, Vol.49 (6), p.523-535
Main Authors: Hoh, H.J., Xiao, Z.M., Luo, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The analytical investigation of the plastic zone size of a crack in three-phase cylindrical model composite material was carried out. The physical problem is simulated as a crack near a circular inclusion (a single fiber) in the composite matrix, while the three-phase cylindrical composite model is used to represent the composite matrix. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small scale yielding, a thin strip of yielded plastic zone is introduced at each crack tip. Using the solution for a three-phase model with a single dislocation in the matrix phase as the Green’s function, the physical problem is formulated into a set of singular integral equations. By employing Erdogan and Gupta’s method, as well as iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacements.
ISSN:0020-7225
1879-2197
DOI:10.1016/j.ijengsci.2011.01.004