Loading…

Hierarchical Test Sequencing for Complex Systems

Testing complex systems, such as the ASML TWINSCAN lithographic machine, is expensive and time consuming. In a previous work, a test sequencing method to calculate time-optimal test sequences has been developed. Because complex systems are composed of several subsystems, which are again composed of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2009-05, Vol.39 (3), p.640-649
Main Authors: Boumen, R., Ruan, S., de Jong, I., van de Mortel-Fronczak, J.M., Rooda, J.E., Pattipati, K.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Testing complex systems, such as the ASML TWINSCAN lithographic machine, is expensive and time consuming. In a previous work, a test sequencing method to calculate time-optimal test sequences has been developed. Because complex systems are composed of several subsystems, which are again composed of several modules, there exists a need to hierarchically model test sequencing problems. Such a hierarchical test sequencing problem consists of a high-level model that describes a test sequencing problem at the system level, and one or more low-level models that describe the test sequencing problems at the subsystem or module level. The tests at the system level correspond to the solutions of low-level problems. This paper describes a hierarchical test sequencing model and proposes two algorithms to compute an optimal test sequence. The benefits of hierarchically modeling a problem are less computational effort and less modeling effort, because not all relations are needed. This is illustrated by a small example. The industrial relevance of this method is illustrated on a case study related to a manufacturing testing phase of a lithographic machine.
ISSN:1083-4427
2168-2216
1558-2426
2168-2232
DOI:10.1109/TSMCA.2009.2014550