Loading…

Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching

In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one tim...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2009-02, Vol.31 (2), p.306-318
Main Author: Marteau, P.-F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83
cites cdi_FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83
container_end_page 318
container_issue 2
container_start_page 306
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 31
creator Marteau, P.-F.
description In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one time series into another. To define the edit operations, we use the paradigm of a graphical editing process and end up with a dynamic programming algorithm that we call time warp edit distance (TWED). TWED is slightly different in form from dynamic time warping (DTW), longest common subsequence (LCSS), or edit distance with real penalty (ERP) algorithms. In particular, it highlights a parameter that controls a kind of stiffness of the elastic measure along the time axis. We show that the similarity provided by TWED is a potentially useful metric in time series retrieval applications since it could benefit from the triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a lower bound is derived to link the matching of time series into down sampled representation spaces to the matching into the original space. The empiric quality of the TWED distance is evaluated on a simple classification task. Compared to edit distance, DTW, LCSS, and ERP, TWED has proved to be quite effective on the considered experimental task.
doi_str_mv 10.1109/TPAMI.2008.76
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_869849294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4479483</ieee_id><sourcerecordid>2295247561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83</originalsourceid><addsrcrecordid>eNqF0s1rFDEUAPAgil2rR0-CDIKKh1mTyfdxaautbFHoiseQyby4WWZntsmMxf_eTHdZwYM9BZLfe-R9IPSS4DkhWH9cfVtcX80rjNVcikdoRjTVJeVUP0YzTERVKlWpE_QspQ3GhHFMn6ITonMs03yGvqzCFoofNu6KiyYMxXlIg-0cFHdhWBc3Q_C-g5SKRbMZ07CFbih8H4v7qBuIAVJxbQe3Dt3P5-iJt22CF4fzFH3_dLE6uyyXXz9fnS2WpeNUDKUTogFvheUa1xS4dZw3UjoLpAJbE4exbhopCHBNPfdcEwG01sJ6VhNQ9BR92Odd29bsYtja-Nv0NpjLxdJMd7lOypmkv3i27_d2F_vbEdJgtiE5aFvbQT8mozEVTGkpH5RKaMV0pVmW7_4rhZAyf_9hSBkTQuupojf_wE0_xi430SgumcxjnLKVe-Rin1IEf6ydYDOtgrlfBTOtgpEi-9eHpGO9heavPsw-g7cHYJOzrY957iEdXUVwRYjE2b3auwAAx2fGpGaK0j9Xv8Gq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857471624</pqid></control><display><type>article</type><title>Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching</title><source>IEEE Xplore (Online service)</source><creator>Marteau, P.-F.</creator><creatorcontrib>Marteau, P.-F.</creatorcontrib><description>In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one time series into another. To define the edit operations, we use the paradigm of a graphical editing process and end up with a dynamic programming algorithm that we call time warp edit distance (TWED). TWED is slightly different in form from dynamic time warping (DTW), longest common subsequence (LCSS), or edit distance with real penalty (ERP) algorithms. In particular, it highlights a parameter that controls a kind of stiffness of the elastic measure along the time axis. We show that the similarity provided by TWED is a potentially useful metric in time series retrieval applications since it could benefit from the triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a lower bound is derived to link the matching of time series into down sampled representation spaces to the matching into the original space. The empiric quality of the TWED distance is evaluated on a simple classification task. Compared to edit distance, DTW, LCSS, and ERP, TWED has proved to be quite effective on the considered experimental task.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2008.76</identifier><identifier>PMID: 19110495</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Artificial Intelligence ; Computer Science ; Computer science; control theory; systems ; Computer Simulation ; Computer Society ; Costs ; Discrete transforms ; Dynamic programming ; Enterprise resource planning ; Exact sciences and technology ; Extraterrestrial measurements ; Information Retrieval ; Information systems. Data bases ; Matching ; Memory organisation. Data processing ; Models, Theoretical ; Monitoring ; Particle measurements ; Partitioning algorithms ; Pattern recognition ; Pattern Recognition, Automated - methods ; Retrieval ; Signal Processing, Computer-Assisted ; Similarity ; similarity measures ; Software ; Stiffness ; Studies ; Subtraction Technique ; Tasks ; Theoretical computing ; Time Factors ; Time measurement ; Time series ; Warp</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2009-02, Vol.31 (2), p.306-318</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83</citedby><cites>FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83</cites><orcidid>0000-0002-3963-8795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4479483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21021170$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19110495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00135473$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marteau, P.-F.</creatorcontrib><title>Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one time series into another. To define the edit operations, we use the paradigm of a graphical editing process and end up with a dynamic programming algorithm that we call time warp edit distance (TWED). TWED is slightly different in form from dynamic time warping (DTW), longest common subsequence (LCSS), or edit distance with real penalty (ERP) algorithms. In particular, it highlights a parameter that controls a kind of stiffness of the elastic measure along the time axis. We show that the similarity provided by TWED is a potentially useful metric in time series retrieval applications since it could benefit from the triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a lower bound is derived to link the matching of time series into down sampled representation spaces to the matching into the original space. The empiric quality of the TWED distance is evaluated on a simple classification task. Compared to edit distance, DTW, LCSS, and ERP, TWED has proved to be quite effective on the considered experimental task.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Computer Society</subject><subject>Costs</subject><subject>Discrete transforms</subject><subject>Dynamic programming</subject><subject>Enterprise resource planning</subject><subject>Exact sciences and technology</subject><subject>Extraterrestrial measurements</subject><subject>Information Retrieval</subject><subject>Information systems. Data bases</subject><subject>Matching</subject><subject>Memory organisation. Data processing</subject><subject>Models, Theoretical</subject><subject>Monitoring</subject><subject>Particle measurements</subject><subject>Partitioning algorithms</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Retrieval</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Similarity</subject><subject>similarity measures</subject><subject>Software</subject><subject>Stiffness</subject><subject>Studies</subject><subject>Subtraction Technique</subject><subject>Tasks</subject><subject>Theoretical computing</subject><subject>Time Factors</subject><subject>Time measurement</subject><subject>Time series</subject><subject>Warp</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqF0s1rFDEUAPAgil2rR0-CDIKKh1mTyfdxaautbFHoiseQyby4WWZntsmMxf_eTHdZwYM9BZLfe-R9IPSS4DkhWH9cfVtcX80rjNVcikdoRjTVJeVUP0YzTERVKlWpE_QspQ3GhHFMn6ITonMs03yGvqzCFoofNu6KiyYMxXlIg-0cFHdhWBc3Q_C-g5SKRbMZ07CFbih8H4v7qBuIAVJxbQe3Dt3P5-iJt22CF4fzFH3_dLE6uyyXXz9fnS2WpeNUDKUTogFvheUa1xS4dZw3UjoLpAJbE4exbhopCHBNPfdcEwG01sJ6VhNQ9BR92Odd29bsYtja-Nv0NpjLxdJMd7lOypmkv3i27_d2F_vbEdJgtiE5aFvbQT8mozEVTGkpH5RKaMV0pVmW7_4rhZAyf_9hSBkTQuupojf_wE0_xi430SgumcxjnLKVe-Rin1IEf6ydYDOtgrlfBTOtgpEi-9eHpGO9heavPsw-g7cHYJOzrY957iEdXUVwRYjE2b3auwAAx2fGpGaK0j9Xv8Gq</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Marteau, P.-F.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3963-8795</orcidid></search><sort><creationdate>20090201</creationdate><title>Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching</title><author>Marteau, P.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Computer Society</topic><topic>Costs</topic><topic>Discrete transforms</topic><topic>Dynamic programming</topic><topic>Enterprise resource planning</topic><topic>Exact sciences and technology</topic><topic>Extraterrestrial measurements</topic><topic>Information Retrieval</topic><topic>Information systems. Data bases</topic><topic>Matching</topic><topic>Memory organisation. Data processing</topic><topic>Models, Theoretical</topic><topic>Monitoring</topic><topic>Particle measurements</topic><topic>Partitioning algorithms</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Retrieval</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Similarity</topic><topic>similarity measures</topic><topic>Software</topic><topic>Stiffness</topic><topic>Studies</topic><topic>Subtraction Technique</topic><topic>Tasks</topic><topic>Theoretical computing</topic><topic>Time Factors</topic><topic>Time measurement</topic><topic>Time series</topic><topic>Warp</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marteau, P.-F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marteau, P.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>31</volume><issue>2</issue><spage>306</spage><epage>318</epage><pages>306-318</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one time series into another. To define the edit operations, we use the paradigm of a graphical editing process and end up with a dynamic programming algorithm that we call time warp edit distance (TWED). TWED is slightly different in form from dynamic time warping (DTW), longest common subsequence (LCSS), or edit distance with real penalty (ERP) algorithms. In particular, it highlights a parameter that controls a kind of stiffness of the elastic measure along the time axis. We show that the similarity provided by TWED is a potentially useful metric in time series retrieval applications since it could benefit from the triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a lower bound is derived to link the matching of time series into down sampled representation spaces to the matching into the original space. The empiric quality of the TWED distance is evaluated on a simple classification task. Compared to edit distance, DTW, LCSS, and ERP, TWED has proved to be quite effective on the considered experimental task.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>19110495</pmid><doi>10.1109/TPAMI.2008.76</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3963-8795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2009-02, Vol.31 (2), p.306-318
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_869849294
source IEEE Xplore (Online service)
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial Intelligence
Computer Science
Computer science
control theory
systems
Computer Simulation
Computer Society
Costs
Discrete transforms
Dynamic programming
Enterprise resource planning
Exact sciences and technology
Extraterrestrial measurements
Information Retrieval
Information systems. Data bases
Matching
Memory organisation. Data processing
Models, Theoretical
Monitoring
Particle measurements
Partitioning algorithms
Pattern recognition
Pattern Recognition, Automated - methods
Retrieval
Signal Processing, Computer-Assisted
Similarity
similarity measures
Software
Stiffness
Studies
Subtraction Technique
Tasks
Theoretical computing
Time Factors
Time measurement
Time series
Warp
title Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Warp%20Edit%20Distance%20with%20Stiffness%20Adjustment%20for%20Time%20Series%20Matching&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Marteau,%20P.-F.&rft.date=2009-02-01&rft.volume=31&rft.issue=2&rft.spage=306&rft.epage=318&rft.pages=306-318&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2008.76&rft_dat=%3Cproquest_pubme%3E2295247561%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857471624&rft_id=info:pmid/19110495&rft_ieee_id=4479483&rfr_iscdi=true