Loading…
Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching
In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one tim...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2009-02, Vol.31 (2), p.306-318 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83 |
---|---|
cites | cdi_FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83 |
container_end_page | 318 |
container_issue | 2 |
container_start_page | 306 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 31 |
creator | Marteau, P.-F. |
description | In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one time series into another. To define the edit operations, we use the paradigm of a graphical editing process and end up with a dynamic programming algorithm that we call time warp edit distance (TWED). TWED is slightly different in form from dynamic time warping (DTW), longest common subsequence (LCSS), or edit distance with real penalty (ERP) algorithms. In particular, it highlights a parameter that controls a kind of stiffness of the elastic measure along the time axis. We show that the similarity provided by TWED is a potentially useful metric in time series retrieval applications since it could benefit from the triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a lower bound is derived to link the matching of time series into down sampled representation spaces to the matching into the original space. The empiric quality of the TWED distance is evaluated on a simple classification task. Compared to edit distance, DTW, LCSS, and ERP, TWED has proved to be quite effective on the considered experimental task. |
doi_str_mv | 10.1109/TPAMI.2008.76 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_869849294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4479483</ieee_id><sourcerecordid>2295247561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83</originalsourceid><addsrcrecordid>eNqF0s1rFDEUAPAgil2rR0-CDIKKh1mTyfdxaautbFHoiseQyby4WWZntsmMxf_eTHdZwYM9BZLfe-R9IPSS4DkhWH9cfVtcX80rjNVcikdoRjTVJeVUP0YzTERVKlWpE_QspQ3GhHFMn6ITonMs03yGvqzCFoofNu6KiyYMxXlIg-0cFHdhWBc3Q_C-g5SKRbMZ07CFbih8H4v7qBuIAVJxbQe3Dt3P5-iJt22CF4fzFH3_dLE6uyyXXz9fnS2WpeNUDKUTogFvheUa1xS4dZw3UjoLpAJbE4exbhopCHBNPfdcEwG01sJ6VhNQ9BR92Odd29bsYtja-Nv0NpjLxdJMd7lOypmkv3i27_d2F_vbEdJgtiE5aFvbQT8mozEVTGkpH5RKaMV0pVmW7_4rhZAyf_9hSBkTQuupojf_wE0_xi430SgumcxjnLKVe-Rin1IEf6ydYDOtgrlfBTOtgpEi-9eHpGO9heavPsw-g7cHYJOzrY957iEdXUVwRYjE2b3auwAAx2fGpGaK0j9Xv8Gq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857471624</pqid></control><display><type>article</type><title>Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching</title><source>IEEE Xplore (Online service)</source><creator>Marteau, P.-F.</creator><creatorcontrib>Marteau, P.-F.</creatorcontrib><description>In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one time series into another. To define the edit operations, we use the paradigm of a graphical editing process and end up with a dynamic programming algorithm that we call time warp edit distance (TWED). TWED is slightly different in form from dynamic time warping (DTW), longest common subsequence (LCSS), or edit distance with real penalty (ERP) algorithms. In particular, it highlights a parameter that controls a kind of stiffness of the elastic measure along the time axis. We show that the similarity provided by TWED is a potentially useful metric in time series retrieval applications since it could benefit from the triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a lower bound is derived to link the matching of time series into down sampled representation spaces to the matching into the original space. The empiric quality of the TWED distance is evaluated on a simple classification task. Compared to edit distance, DTW, LCSS, and ERP, TWED has proved to be quite effective on the considered experimental task.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2008.76</identifier><identifier>PMID: 19110495</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Artificial Intelligence ; Computer Science ; Computer science; control theory; systems ; Computer Simulation ; Computer Society ; Costs ; Discrete transforms ; Dynamic programming ; Enterprise resource planning ; Exact sciences and technology ; Extraterrestrial measurements ; Information Retrieval ; Information systems. Data bases ; Matching ; Memory organisation. Data processing ; Models, Theoretical ; Monitoring ; Particle measurements ; Partitioning algorithms ; Pattern recognition ; Pattern Recognition, Automated - methods ; Retrieval ; Signal Processing, Computer-Assisted ; Similarity ; similarity measures ; Software ; Stiffness ; Studies ; Subtraction Technique ; Tasks ; Theoretical computing ; Time Factors ; Time measurement ; Time series ; Warp</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2009-02, Vol.31 (2), p.306-318</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83</citedby><cites>FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83</cites><orcidid>0000-0002-3963-8795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4479483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21021170$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19110495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00135473$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marteau, P.-F.</creatorcontrib><title>Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one time series into another. To define the edit operations, we use the paradigm of a graphical editing process and end up with a dynamic programming algorithm that we call time warp edit distance (TWED). TWED is slightly different in form from dynamic time warping (DTW), longest common subsequence (LCSS), or edit distance with real penalty (ERP) algorithms. In particular, it highlights a parameter that controls a kind of stiffness of the elastic measure along the time axis. We show that the similarity provided by TWED is a potentially useful metric in time series retrieval applications since it could benefit from the triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a lower bound is derived to link the matching of time series into down sampled representation spaces to the matching into the original space. The empiric quality of the TWED distance is evaluated on a simple classification task. Compared to edit distance, DTW, LCSS, and ERP, TWED has proved to be quite effective on the considered experimental task.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Computer Society</subject><subject>Costs</subject><subject>Discrete transforms</subject><subject>Dynamic programming</subject><subject>Enterprise resource planning</subject><subject>Exact sciences and technology</subject><subject>Extraterrestrial measurements</subject><subject>Information Retrieval</subject><subject>Information systems. Data bases</subject><subject>Matching</subject><subject>Memory organisation. Data processing</subject><subject>Models, Theoretical</subject><subject>Monitoring</subject><subject>Particle measurements</subject><subject>Partitioning algorithms</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Retrieval</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Similarity</subject><subject>similarity measures</subject><subject>Software</subject><subject>Stiffness</subject><subject>Studies</subject><subject>Subtraction Technique</subject><subject>Tasks</subject><subject>Theoretical computing</subject><subject>Time Factors</subject><subject>Time measurement</subject><subject>Time series</subject><subject>Warp</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqF0s1rFDEUAPAgil2rR0-CDIKKh1mTyfdxaautbFHoiseQyby4WWZntsmMxf_eTHdZwYM9BZLfe-R9IPSS4DkhWH9cfVtcX80rjNVcikdoRjTVJeVUP0YzTERVKlWpE_QspQ3GhHFMn6ITonMs03yGvqzCFoofNu6KiyYMxXlIg-0cFHdhWBc3Q_C-g5SKRbMZ07CFbih8H4v7qBuIAVJxbQe3Dt3P5-iJt22CF4fzFH3_dLE6uyyXXz9fnS2WpeNUDKUTogFvheUa1xS4dZw3UjoLpAJbE4exbhopCHBNPfdcEwG01sJ6VhNQ9BR92Odd29bsYtja-Nv0NpjLxdJMd7lOypmkv3i27_d2F_vbEdJgtiE5aFvbQT8mozEVTGkpH5RKaMV0pVmW7_4rhZAyf_9hSBkTQuupojf_wE0_xi430SgumcxjnLKVe-Rin1IEf6ydYDOtgrlfBTOtgpEi-9eHpGO9heavPsw-g7cHYJOzrY957iEdXUVwRYjE2b3auwAAx2fGpGaK0j9Xv8Gq</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Marteau, P.-F.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3963-8795</orcidid></search><sort><creationdate>20090201</creationdate><title>Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching</title><author>Marteau, P.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Computer Society</topic><topic>Costs</topic><topic>Discrete transforms</topic><topic>Dynamic programming</topic><topic>Enterprise resource planning</topic><topic>Exact sciences and technology</topic><topic>Extraterrestrial measurements</topic><topic>Information Retrieval</topic><topic>Information systems. Data bases</topic><topic>Matching</topic><topic>Memory organisation. Data processing</topic><topic>Models, Theoretical</topic><topic>Monitoring</topic><topic>Particle measurements</topic><topic>Partitioning algorithms</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Retrieval</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Similarity</topic><topic>similarity measures</topic><topic>Software</topic><topic>Stiffness</topic><topic>Studies</topic><topic>Subtraction Technique</topic><topic>Tasks</topic><topic>Theoretical computing</topic><topic>Time Factors</topic><topic>Time measurement</topic><topic>Time series</topic><topic>Warp</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marteau, P.-F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marteau, P.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>31</volume><issue>2</issue><spage>306</spage><epage>318</epage><pages>306-318</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one time series into another. To define the edit operations, we use the paradigm of a graphical editing process and end up with a dynamic programming algorithm that we call time warp edit distance (TWED). TWED is slightly different in form from dynamic time warping (DTW), longest common subsequence (LCSS), or edit distance with real penalty (ERP) algorithms. In particular, it highlights a parameter that controls a kind of stiffness of the elastic measure along the time axis. We show that the similarity provided by TWED is a potentially useful metric in time series retrieval applications since it could benefit from the triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a lower bound is derived to link the matching of time series into down sampled representation spaces to the matching into the original space. The empiric quality of the TWED distance is evaluated on a simple classification task. Compared to edit distance, DTW, LCSS, and ERP, TWED has proved to be quite effective on the considered experimental task.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>19110495</pmid><doi>10.1109/TPAMI.2008.76</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3963-8795</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2009-02, Vol.31 (2), p.306-318 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_869849294 |
source | IEEE Xplore (Online service) |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Artificial Intelligence Computer Science Computer science control theory systems Computer Simulation Computer Society Costs Discrete transforms Dynamic programming Enterprise resource planning Exact sciences and technology Extraterrestrial measurements Information Retrieval Information systems. Data bases Matching Memory organisation. Data processing Models, Theoretical Monitoring Particle measurements Partitioning algorithms Pattern recognition Pattern Recognition, Automated - methods Retrieval Signal Processing, Computer-Assisted Similarity similarity measures Software Stiffness Studies Subtraction Technique Tasks Theoretical computing Time Factors Time measurement Time series Warp |
title | Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Warp%20Edit%20Distance%20with%20Stiffness%20Adjustment%20for%20Time%20Series%20Matching&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Marteau,%20P.-F.&rft.date=2009-02-01&rft.volume=31&rft.issue=2&rft.spage=306&rft.epage=318&rft.pages=306-318&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2008.76&rft_dat=%3Cproquest_pubme%3E2295247561%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-c66defa6a590b3e5ac55d77cae12eab1c009dd761e593f5f5916e3b96af4b1e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857471624&rft_id=info:pmid/19110495&rft_ieee_id=4479483&rfr_iscdi=true |