Loading…

Meshless Helmholtz-Hodge Decomposition

Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decompo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2010-03, Vol.16 (2), p.338-349
Main Authors: Petronetto, F., Paiva, A., Lage, M., Tavares, G., Lopes, H., Lewiner, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593
cites cdi_FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593
container_end_page 349
container_issue 2
container_start_page 338
container_title IEEE transactions on visualization and computer graphics
container_volume 16
creator Petronetto, F.
Paiva, A.
Lage, M.
Tavares, G.
Lopes, H.
Lewiner, T.
description Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decomposition is usually achieved by using mesh-based methods such as finite differences or finite elements. This work presents a new meshless approach to the Helmholtz-Hodge decomposition for the analysis of 2D discrete vector fields. It embeds into the SPH particle-based framework. The proposed method is efficient and can be applied to extract features from a 2D discrete vector field and to multiphase fluid flow simulation to ensure incompressibility.
doi_str_mv 10.1109/TVCG.2009.61
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869849470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5200996</ieee_id><sourcerecordid>1671265198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBWALgWgpbGxIqGIABlJ8_b4jKtAiFbEUVisPh6ZK6hK3A_x6ErV0YIDJlvz56F4dQk6BDgAo3k7fhqMBoxQHCvZIF1BARCVV-82dah0xxVSHHIUwpxSEMHhIOg3XUiDrkstnF2alC6E_dmU18-XqKxr77N31713qq6UPxarwi2NykMdlcCfbs0deHx-mw3E0eRk9De8mUSooW0Ux5NIwiblWkHLIDI-ZjA0ziEZrLhImZYaomYldkrBMSOCZAzQMhFQSeY9cbXKXtf9Yu7CyVRFSV5bxwvl1sEahESg0_VdqzqVBwDbz-k8JSgNTspmioRe_6Nyv60WzsTVSCc7bgXvkZoPS2odQu9wu66KK608L1LaV2LYS21ZiVcvPt5nrpHLZDv900ICzDSicc7tn2f5Hxb8Bln6K1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856433451</pqid></control><display><type>article</type><title>Meshless Helmholtz-Hodge Decomposition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Petronetto, F. ; Paiva, A. ; Lage, M. ; Tavares, G. ; Lopes, H. ; Lewiner, T.</creator><creatorcontrib>Petronetto, F. ; Paiva, A. ; Lage, M. ; Tavares, G. ; Lopes, H. ; Lewiner, T.</creatorcontrib><description>Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decomposition is usually achieved by using mesh-based methods such as finite differences or finite elements. This work presents a new meshless approach to the Helmholtz-Hodge decomposition for the analysis of 2D discrete vector fields. It embeds into the SPH particle-based framework. The proposed method is efficient and can be applied to extract features from a 2D discrete vector field and to multiphase fluid flow simulation to ensure incompressibility.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2009.61</identifier><identifier>PMID: 20075492</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Application software ; Computational fluid dynamics ; Computational modeling ; Computer Graphics ; Computer Simulation ; Decomposition ; Feature extraction ; features visualization ; Finite difference methods ; Finite element method ; Finite element methods ; Fluid flow ; Helmholtz-Hodge decomposition ; Hydrodynamics ; incompressible flow ; Mathematical analysis ; Mathematics ; Meshless methods ; Models, Theoretical ; multiphase fluids ; Poisson equations ; Rheology - methods ; smoothed particles hydrodynamics ; Two dimensional ; vector field ; Vectors (mathematics) ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2010-03, Vol.16 (2), p.338-349</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar/Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593</citedby><cites>FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5200996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20075492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petronetto, F.</creatorcontrib><creatorcontrib>Paiva, A.</creatorcontrib><creatorcontrib>Lage, M.</creatorcontrib><creatorcontrib>Tavares, G.</creatorcontrib><creatorcontrib>Lopes, H.</creatorcontrib><creatorcontrib>Lewiner, T.</creatorcontrib><title>Meshless Helmholtz-Hodge Decomposition</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decomposition is usually achieved by using mesh-based methods such as finite differences or finite elements. This work presents a new meshless approach to the Helmholtz-Hodge decomposition for the analysis of 2D discrete vector fields. It embeds into the SPH particle-based framework. The proposed method is efficient and can be applied to extract features from a 2D discrete vector field and to multiphase fluid flow simulation to ensure incompressibility.</description><subject>Algorithms</subject><subject>Application software</subject><subject>Computational fluid dynamics</subject><subject>Computational modeling</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Decomposition</subject><subject>Feature extraction</subject><subject>features visualization</subject><subject>Finite difference methods</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>Fluid flow</subject><subject>Helmholtz-Hodge decomposition</subject><subject>Hydrodynamics</subject><subject>incompressible flow</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Meshless methods</subject><subject>Models, Theoretical</subject><subject>multiphase fluids</subject><subject>Poisson equations</subject><subject>Rheology - methods</subject><subject>smoothed particles hydrodynamics</subject><subject>Two dimensional</subject><subject>vector field</subject><subject>Vectors (mathematics)</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0TtPwzAUBWALgWgpbGxIqGIABlJ8_b4jKtAiFbEUVisPh6ZK6hK3A_x6ErV0YIDJlvz56F4dQk6BDgAo3k7fhqMBoxQHCvZIF1BARCVV-82dah0xxVSHHIUwpxSEMHhIOg3XUiDrkstnF2alC6E_dmU18-XqKxr77N31713qq6UPxarwi2NykMdlcCfbs0deHx-mw3E0eRk9De8mUSooW0Ux5NIwiblWkHLIDI-ZjA0ziEZrLhImZYaomYldkrBMSOCZAzQMhFQSeY9cbXKXtf9Yu7CyVRFSV5bxwvl1sEahESg0_VdqzqVBwDbz-k8JSgNTspmioRe_6Nyv60WzsTVSCc7bgXvkZoPS2odQu9wu66KK608L1LaV2LYS21ZiVcvPt5nrpHLZDv900ICzDSicc7tn2f5Hxb8Bln6K1Q</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Petronetto, F.</creator><creator>Paiva, A.</creator><creator>Lage, M.</creator><creator>Tavares, G.</creator><creator>Lopes, H.</creator><creator>Lewiner, T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>201003</creationdate><title>Meshless Helmholtz-Hodge Decomposition</title><author>Petronetto, F. ; Paiva, A. ; Lage, M. ; Tavares, G. ; Lopes, H. ; Lewiner, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Application software</topic><topic>Computational fluid dynamics</topic><topic>Computational modeling</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Decomposition</topic><topic>Feature extraction</topic><topic>features visualization</topic><topic>Finite difference methods</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>Fluid flow</topic><topic>Helmholtz-Hodge decomposition</topic><topic>Hydrodynamics</topic><topic>incompressible flow</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Meshless methods</topic><topic>Models, Theoretical</topic><topic>multiphase fluids</topic><topic>Poisson equations</topic><topic>Rheology - methods</topic><topic>smoothed particles hydrodynamics</topic><topic>Two dimensional</topic><topic>vector field</topic><topic>Vectors (mathematics)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petronetto, F.</creatorcontrib><creatorcontrib>Paiva, A.</creatorcontrib><creatorcontrib>Lage, M.</creatorcontrib><creatorcontrib>Tavares, G.</creatorcontrib><creatorcontrib>Lopes, H.</creatorcontrib><creatorcontrib>Lewiner, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petronetto, F.</au><au>Paiva, A.</au><au>Lage, M.</au><au>Tavares, G.</au><au>Lopes, H.</au><au>Lewiner, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meshless Helmholtz-Hodge Decomposition</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2010-03</date><risdate>2010</risdate><volume>16</volume><issue>2</issue><spage>338</spage><epage>349</epage><pages>338-349</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decomposition is usually achieved by using mesh-based methods such as finite differences or finite elements. This work presents a new meshless approach to the Helmholtz-Hodge decomposition for the analysis of 2D discrete vector fields. It embeds into the SPH particle-based framework. The proposed method is efficient and can be applied to extract features from a 2D discrete vector field and to multiphase fluid flow simulation to ensure incompressibility.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20075492</pmid><doi>10.1109/TVCG.2009.61</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2010-03, Vol.16 (2), p.338-349
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_869849470
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Application software
Computational fluid dynamics
Computational modeling
Computer Graphics
Computer Simulation
Decomposition
Feature extraction
features visualization
Finite difference methods
Finite element method
Finite element methods
Fluid flow
Helmholtz-Hodge decomposition
Hydrodynamics
incompressible flow
Mathematical analysis
Mathematics
Meshless methods
Models, Theoretical
multiphase fluids
Poisson equations
Rheology - methods
smoothed particles hydrodynamics
Two dimensional
vector field
Vectors (mathematics)
Visualization
title Meshless Helmholtz-Hodge Decomposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meshless%20Helmholtz-Hodge%20Decomposition&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Petronetto,%20F.&rft.date=2010-03&rft.volume=16&rft.issue=2&rft.spage=338&rft.epage=349&rft.pages=338-349&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2009.61&rft_dat=%3Cproquest_cross%3E1671265198%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856433451&rft_id=info:pmid/20075492&rft_ieee_id=5200996&rfr_iscdi=true