Loading…
Meshless Helmholtz-Hodge Decomposition
Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decompo...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2010-03, Vol.16 (2), p.338-349 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593 |
container_end_page | 349 |
container_issue | 2 |
container_start_page | 338 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 16 |
creator | Petronetto, F. Paiva, A. Lage, M. Tavares, G. Lopes, H. Lewiner, T. |
description | Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decomposition is usually achieved by using mesh-based methods such as finite differences or finite elements. This work presents a new meshless approach to the Helmholtz-Hodge decomposition for the analysis of 2D discrete vector fields. It embeds into the SPH particle-based framework. The proposed method is efficient and can be applied to extract features from a 2D discrete vector field and to multiphase fluid flow simulation to ensure incompressibility. |
doi_str_mv | 10.1109/TVCG.2009.61 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869849470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5200996</ieee_id><sourcerecordid>1671265198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBWALgWgpbGxIqGIABlJ8_b4jKtAiFbEUVisPh6ZK6hK3A_x6ErV0YIDJlvz56F4dQk6BDgAo3k7fhqMBoxQHCvZIF1BARCVV-82dah0xxVSHHIUwpxSEMHhIOg3XUiDrkstnF2alC6E_dmU18-XqKxr77N31713qq6UPxarwi2NykMdlcCfbs0deHx-mw3E0eRk9De8mUSooW0Ux5NIwiblWkHLIDI-ZjA0ziEZrLhImZYaomYldkrBMSOCZAzQMhFQSeY9cbXKXtf9Yu7CyVRFSV5bxwvl1sEahESg0_VdqzqVBwDbz-k8JSgNTspmioRe_6Nyv60WzsTVSCc7bgXvkZoPS2odQu9wu66KK608L1LaV2LYS21ZiVcvPt5nrpHLZDv900ICzDSicc7tn2f5Hxb8Bln6K1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856433451</pqid></control><display><type>article</type><title>Meshless Helmholtz-Hodge Decomposition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Petronetto, F. ; Paiva, A. ; Lage, M. ; Tavares, G. ; Lopes, H. ; Lewiner, T.</creator><creatorcontrib>Petronetto, F. ; Paiva, A. ; Lage, M. ; Tavares, G. ; Lopes, H. ; Lewiner, T.</creatorcontrib><description>Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decomposition is usually achieved by using mesh-based methods such as finite differences or finite elements. This work presents a new meshless approach to the Helmholtz-Hodge decomposition for the analysis of 2D discrete vector fields. It embeds into the SPH particle-based framework. The proposed method is efficient and can be applied to extract features from a 2D discrete vector field and to multiphase fluid flow simulation to ensure incompressibility.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2009.61</identifier><identifier>PMID: 20075492</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Application software ; Computational fluid dynamics ; Computational modeling ; Computer Graphics ; Computer Simulation ; Decomposition ; Feature extraction ; features visualization ; Finite difference methods ; Finite element method ; Finite element methods ; Fluid flow ; Helmholtz-Hodge decomposition ; Hydrodynamics ; incompressible flow ; Mathematical analysis ; Mathematics ; Meshless methods ; Models, Theoretical ; multiphase fluids ; Poisson equations ; Rheology - methods ; smoothed particles hydrodynamics ; Two dimensional ; vector field ; Vectors (mathematics) ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2010-03, Vol.16 (2), p.338-349</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar/Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593</citedby><cites>FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5200996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20075492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petronetto, F.</creatorcontrib><creatorcontrib>Paiva, A.</creatorcontrib><creatorcontrib>Lage, M.</creatorcontrib><creatorcontrib>Tavares, G.</creatorcontrib><creatorcontrib>Lopes, H.</creatorcontrib><creatorcontrib>Lewiner, T.</creatorcontrib><title>Meshless Helmholtz-Hodge Decomposition</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decomposition is usually achieved by using mesh-based methods such as finite differences or finite elements. This work presents a new meshless approach to the Helmholtz-Hodge decomposition for the analysis of 2D discrete vector fields. It embeds into the SPH particle-based framework. The proposed method is efficient and can be applied to extract features from a 2D discrete vector field and to multiphase fluid flow simulation to ensure incompressibility.</description><subject>Algorithms</subject><subject>Application software</subject><subject>Computational fluid dynamics</subject><subject>Computational modeling</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Decomposition</subject><subject>Feature extraction</subject><subject>features visualization</subject><subject>Finite difference methods</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>Fluid flow</subject><subject>Helmholtz-Hodge decomposition</subject><subject>Hydrodynamics</subject><subject>incompressible flow</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Meshless methods</subject><subject>Models, Theoretical</subject><subject>multiphase fluids</subject><subject>Poisson equations</subject><subject>Rheology - methods</subject><subject>smoothed particles hydrodynamics</subject><subject>Two dimensional</subject><subject>vector field</subject><subject>Vectors (mathematics)</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0TtPwzAUBWALgWgpbGxIqGIABlJ8_b4jKtAiFbEUVisPh6ZK6hK3A_x6ErV0YIDJlvz56F4dQk6BDgAo3k7fhqMBoxQHCvZIF1BARCVV-82dah0xxVSHHIUwpxSEMHhIOg3XUiDrkstnF2alC6E_dmU18-XqKxr77N31713qq6UPxarwi2NykMdlcCfbs0deHx-mw3E0eRk9De8mUSooW0Ux5NIwiblWkHLIDI-ZjA0ziEZrLhImZYaomYldkrBMSOCZAzQMhFQSeY9cbXKXtf9Yu7CyVRFSV5bxwvl1sEahESg0_VdqzqVBwDbz-k8JSgNTspmioRe_6Nyv60WzsTVSCc7bgXvkZoPS2odQu9wu66KK608L1LaV2LYS21ZiVcvPt5nrpHLZDv900ICzDSicc7tn2f5Hxb8Bln6K1Q</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Petronetto, F.</creator><creator>Paiva, A.</creator><creator>Lage, M.</creator><creator>Tavares, G.</creator><creator>Lopes, H.</creator><creator>Lewiner, T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>201003</creationdate><title>Meshless Helmholtz-Hodge Decomposition</title><author>Petronetto, F. ; Paiva, A. ; Lage, M. ; Tavares, G. ; Lopes, H. ; Lewiner, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Application software</topic><topic>Computational fluid dynamics</topic><topic>Computational modeling</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Decomposition</topic><topic>Feature extraction</topic><topic>features visualization</topic><topic>Finite difference methods</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>Fluid flow</topic><topic>Helmholtz-Hodge decomposition</topic><topic>Hydrodynamics</topic><topic>incompressible flow</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Meshless methods</topic><topic>Models, Theoretical</topic><topic>multiphase fluids</topic><topic>Poisson equations</topic><topic>Rheology - methods</topic><topic>smoothed particles hydrodynamics</topic><topic>Two dimensional</topic><topic>vector field</topic><topic>Vectors (mathematics)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petronetto, F.</creatorcontrib><creatorcontrib>Paiva, A.</creatorcontrib><creatorcontrib>Lage, M.</creatorcontrib><creatorcontrib>Tavares, G.</creatorcontrib><creatorcontrib>Lopes, H.</creatorcontrib><creatorcontrib>Lewiner, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petronetto, F.</au><au>Paiva, A.</au><au>Lage, M.</au><au>Tavares, G.</au><au>Lopes, H.</au><au>Lewiner, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meshless Helmholtz-Hodge Decomposition</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2010-03</date><risdate>2010</risdate><volume>16</volume><issue>2</issue><spage>338</spage><epage>349</epage><pages>338-349</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decomposition is usually achieved by using mesh-based methods such as finite differences or finite elements. This work presents a new meshless approach to the Helmholtz-Hodge decomposition for the analysis of 2D discrete vector fields. It embeds into the SPH particle-based framework. The proposed method is efficient and can be applied to extract features from a 2D discrete vector field and to multiphase fluid flow simulation to ensure incompressibility.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20075492</pmid><doi>10.1109/TVCG.2009.61</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2010-03, Vol.16 (2), p.338-349 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_miscellaneous_869849470 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Application software Computational fluid dynamics Computational modeling Computer Graphics Computer Simulation Decomposition Feature extraction features visualization Finite difference methods Finite element method Finite element methods Fluid flow Helmholtz-Hodge decomposition Hydrodynamics incompressible flow Mathematical analysis Mathematics Meshless methods Models, Theoretical multiphase fluids Poisson equations Rheology - methods smoothed particles hydrodynamics Two dimensional vector field Vectors (mathematics) Visualization |
title | Meshless Helmholtz-Hodge Decomposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meshless%20Helmholtz-Hodge%20Decomposition&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Petronetto,%20F.&rft.date=2010-03&rft.volume=16&rft.issue=2&rft.spage=338&rft.epage=349&rft.pages=338-349&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2009.61&rft_dat=%3Cproquest_cross%3E1671265198%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-a1f58259f761c31d83a25a8289987734b255d99728aebb2d4513de19821456593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856433451&rft_id=info:pmid/20075492&rft_ieee_id=5200996&rfr_iscdi=true |