Loading…
Pareto Optimal Design of Dual-Band Base Station Antenna Arrays Using Multi-Objective Particle Swarm Optimization With Fitness Sharing
The design of dual-band base station antennas under constraints for mobile communications is addressed in this paper. Given the antenna geometry, the method of moments (MoM) is used to compute the antenna characteristics. Two distinct multi-objective evolutionary algorithms are applied in order to f...
Saved in:
Published in: | IEEE transactions on magnetics 2009-03, Vol.45 (3), p.1522-1525 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design of dual-band base station antennas under constraints for mobile communications is addressed in this paper. Given the antenna geometry, the method of moments (MoM) is used to compute the antenna characteristics. Two distinct multi-objective evolutionary algorithms are applied in order to find the Pareto front of the feasible solutions that satisfy the design constraints. In the present work, the Multi-Objective Particle Swarm Optimization with fitness sharing (MOPSO-fs) is compared with the Nondominated Sorting Genetic Algorithm-II (NSGA-II) in order to optimize the antenna geometry. Two design cases are presented. The first case is a five-element array operating in GSM1800/UMTS frequency bands. The second base station antenna array consists of six elements operating in UMTS/WLAN (2.4 GHz) frequency bands. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2009.2012695 |