Loading…

Collection of Photoelectrons and Operating Parameters of CsI Photocathode GEM Detectors

A study has been made of the parameters affecting the extraction and collection of photoelectrons from the surface of a CsI photocathode in a triple GEM detector. The purpose of this study was to optimize the photoelectron collection efficiency and GEM operating conditions for the PHENIX Hadron Blin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 2009-06, Vol.56 (3), p.1544-1549
Main Authors: Azmoun, B., Caccavano, A., Citron, Z., Durham, M., Hemmick, T., Kamin, J., Rumore, M., Woody, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A study has been made of the parameters affecting the extraction and collection of photoelectrons from the surface of a CsI photocathode in a triple GEM detector. The purpose of this study was to optimize the photoelectron collection efficiency and GEM operating conditions for the PHENIX Hadron Blind Detector (HBD) at RHIC. The parameters investigated include the electric field at the surface of the photocathode, the voltage across the GEM, the electric field below the GEM, the medium into which the photoelectrons are extracted (gas or vacuum), and the wavelength dependence of the extraction efficiency. A small, calibrated light source, or ldquoscintillation cuberdquo was used to illuminate a GEM CsI photocathode with a known photon flux produced by the scintillation light from 5.48 MeV alpha particles in CF 4 . The photoelectron collection efficiency was calculated by comparing the number of photoelectrons produced to the number collected at the GEM readout pad. Results are presented on the study of the parameters affecting the photoelectron collection efficiency and the construction and calibration of the scintillation cube.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2009.2020983