Loading…
Characterization of the Microdialysis Junction Interface for Capillary Electrophoresis/Microelectrospray Ionization Mass Spectrometry
A capillary electrophoresis/electrospray ionization mass spectrometry (CE/ESI-MS) interface, based on an electric circuit across a microdialysis membrane surrounding a short capillary segment closely connected to the separation capillary terminus, is demonstrated to be sensitive, efficient, and rugg...
Saved in:
Published in: | Analytical chemistry (Washington) 1997-06, Vol.69 (11), p.2154-2158 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A capillary electrophoresis/electrospray ionization mass spectrometry (CE/ESI-MS) interface, based on an electric circuit across a microdialysis membrane surrounding a short capillary segment closely connected to the separation capillary terminus, is demonstrated to be sensitive, efficient, and rugged. A microspray type ionization emitter produces a stable electrospray at the low flow rates provided by CE and thus avoids both the need for a makeup liquid flow provided by liquid junction or sheath flow interfaces and the subsequent dilution and reduction in sensitivity. Reproducibility studies and comparisons with CE/UV and the CE/sheath flow interface with ESI-MS are presented. Additionally, postrun acidification via the microdialysis junction interface is demonstrated and shown to be capable of denaturing the holomyoglobin protein noncovalent complex while maintaining separation efficiency. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac9611226 |