Loading…

(Pro)renin promotes fibrosis gene expression in HEK cells through a Nox4-dependent mechanism

The (pro)renin receptor (PRR) has recently been demonstrated to bind equally well renin and its precursor, prorenin, leading to a similar intracellular signaling independent of angiotensin II. In this study, we report that human embryonic kidney cells (HEK) exposed to renin or prorenin for 24 h in t...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Renal physiology 2011-06, Vol.300 (6), p.F1310-F1318
Main Authors: Clavreul, Nicolas, Sansilvestri-Morel, Patricia, Magard, Delphine, Verbeuren, Tony J, Rupin, Alain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The (pro)renin receptor (PRR) has recently been demonstrated to bind equally well renin and its precursor, prorenin, leading to a similar intracellular signaling independent of angiotensin II. In this study, we report that human embryonic kidney cells (HEK) exposed to renin or prorenin for 24 h in the presence of a blocking concentration of the angtiotensin-converting enzyme inhibitor perindoprilate increased superoxide anion production as measured by luminescence (lucigenin) and electron spin resonance spectroscopy (hydroxylamine radical transition). Also, both renin and prorenin increased Nox4 expression while Nox2, p47(phox), and p67(phox) remained unchanged. In an investigation of the effects of renin and prorenin on fibrosis genes, it appeared that both proteins stimulated transforming growth factor-β (TGF-β), fibronectin, and plasminogen activator inhibitor type 1 (PAI-1) expression and therefore participated to an overall switch toward a profibrotic state of the kidney cells. When the cells were transfected with a siRNA targeting the PRR, Nox4 expression was efficiently prevented as well as the increase in superoxide production, TGF-β, fibronectin, and PAI-1. Finally, we demonstrated that transfection of the cells with a Nox4-specific small interfering (si) RNA also prevented fibrosis gene expression following treatment with renin or prorenin. The results demonstrate that renin and prorenin, through their specific membrane receptor and independently of angiotensin II, promote fibrosis gene expression via a Nox4-dependent mechanism.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00119.2010