Loading…

plenty, a Novel Hypernodulation Mutant in Lotus japonicus

Nitrogen fixation in nodules that contain symbiotic rhizobial bacteria enables legumes to thrive in nitrogen-poor soils. However, this symbiosis is energy consuming. Therefore, legumes strictly control nodulation at both local and systemic levels. Mutants deficient in such controls exhibit a range o...

Full description

Saved in:
Bibliographic Details
Published in:Plant and cell physiology 2010-09, Vol.51 (9), p.1425-1435
Main Authors: Yoshida, Chie, Funayama-Noguchi, Sachiko, Kawaguchi, Masayoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nitrogen fixation in nodules that contain symbiotic rhizobial bacteria enables legumes to thrive in nitrogen-poor soils. However, this symbiosis is energy consuming. Therefore, legumes strictly control nodulation at both local and systemic levels. Mutants deficient in such controls exhibit a range of phenotypes from non-nodulation to hypernodulation. Here, we isolated a novel hypernodulation mutant from the M₂ progeny derived from Lotus japonicus MG-20 seeds mutagenized by irradiation with a carbon ion beam. We named the mutant 'plenty' because it formed more nodules than the wild-type MG-20. The nodulation zone in the plenty mutant was wider than that in the wild type, but not as enhanced as those in other previously reported hypernodulation mutants such as har1, klv or tml of L. japonicus. Unlike these hypernodulation mutants, the plenty mutant developed nodules of the same size as MG-20. Overall, the plenty mutant exhibited a unique phenotype of moderate hypernodulation. However, a biomass assay indicated that this unique pattern of hypernodulation was a hindrance to host plant growth. The plenty mutant displayed some tolerance to external nitrates and a normal triple response to ethylene. Grafting experiments demonstrated that the root of plenty was responsible for its hypernodulation phenotype. Genetic mapping indicated that the PLENTY gene was located on chromosome 2.
ISSN:0032-0781
1471-9053
DOI:10.1093/pcp/pcq115