Loading…

B-3 Ethylene Response Factor MtERF1-1 Mediates Resistance to a Subset of Root Pathogens in Medicago truncatula without Adversely Affecting Symbiosis with Rhizobia

The fungal necrotrophic pathogen Rhizoctonia solani is a significant constraint to a range of crops as diverse as cereals, canola, and legumes. Despite wide-ranging germplasm screens in many of these crops, no strong genetic resistance has been identified, suggesting that alternative strategies to i...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2010-10, Vol.154 (2), p.861-873
Main Authors: Anderson, Jonathan P, Lichtenzveig, Judith, Gleason, Cynthia, Oliver, Richard P, Singh, Karam B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-74334347d32f60c1a4eff481459a48991882203ca927266c77937899dcf91a313
cites cdi_FETCH-LOGICAL-c455t-74334347d32f60c1a4eff481459a48991882203ca927266c77937899dcf91a313
container_end_page 873
container_issue 2
container_start_page 861
container_title Plant physiology (Bethesda)
container_volume 154
creator Anderson, Jonathan P
Lichtenzveig, Judith
Gleason, Cynthia
Oliver, Richard P
Singh, Karam B
description The fungal necrotrophic pathogen Rhizoctonia solani is a significant constraint to a range of crops as diverse as cereals, canola, and legumes. Despite wide-ranging germplasm screens in many of these crops, no strong genetic resistance has been identified, suggesting that alternative strategies to improve resistance are required. In this study, we characterize moderate resistance to R. solani anastomosis group 8 identified in Medicago truncatula. The activity of the ethylene- and jasmonate-responsive GCC box promoter element was associated with moderate resistance, as was the induction of the B-3 subgroup of ethylene response transcription factors (ERFs). Genes of the B-1 subgroup showed no significant response to R. solani infection. Overexpression of a B-3 ERF, MtERF1-1, in Medicago roots increased resistance to R. solani as well as an oomycete root pathogen, Phytophthora medicaginis, but not root knot nematode. These results indicate that targeting specific regulators of ethylene defense may enhance resistance to an important subset of root pathogens. We also demonstrate that overexpression of MtERF1-1 enhances disease resistance without apparent impact on nodulation in the A17 background, while overexpression in sickle reduced the hypernodulation phenotype. This suggests that under normal regulation of nodulation, enhanced resistance to root diseases can be uncoupled from symbiotic plant-microbe interactions in the same tissue and that ethylene/ERF regulation of nodule number is distinct from the defenses regulated by B-3 ERFs. Furthermore, unlike the stunted phenotype previously described for Arabidopsis (Arabidopsis thaliana) ubiquitously overexpressing B-3 ERFs, overexpression of MtERF1-1 in M. truncatula roots did not show adverse effects on plant development.
doi_str_mv 10.1104/pp.110.163949
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_872129931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20779838</jstor_id><sourcerecordid>20779838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-74334347d32f60c1a4eff481459a48991882203ca927266c77937899dcf91a313</originalsourceid><addsrcrecordid>eNp9kk-PEyEYxonRuLV69KhyMZ5m5d_MwMWkblo12Y2mdc-EUmjZTIdZYNbUj-MnlenUdb14egnvj-cB3geAlxidY4zY-64b6jmuqGDiEZjgkpKClIw_BhOE8hpxLs7AsxhvEEKYYvYUnBFUY1phPgG_PhYUztPu0JjWwKWJnW-jgQulkw_wKs2XC1xgeGU2TiUTB8LFpFptYPJQwVW_jiZBb-HS-wS_qbTzW9NG6NrjIa22HqbQt1qlvlHwh8tAn-Bsc2dCNM0Bzqw1Orl2C1eH_dr5rH-k4HLnfvq1U8_BE6uaaF6c6hRcL-bfLz4Xl18_fbmYXRaalWUqakYpo6zeUGIrpLFixlrGMSuFYlwIzDkhiGolSE2qSte1oHXe32grsKKYTsGHUbfr13uz0aZNQTWyC26vwkF65eS_ndbt5NbfSZJ_HmX3KXh3Egj-tjcxyb2L2jSNao3vo-Q1wUSIo9X_ybqsqooLIjJZjKQOPsZg7P19MJJDAGTXDVWOAcj864ePuKf_TDwDb0-Ailo1NuRZuviXo0RUo_GrkbuJOQkPdWrB6aDzZuxb5aXahqxxvSI5YAhzwbMG_Q3r3sxl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756668929</pqid></control><display><type>article</type><title>B-3 Ethylene Response Factor MtERF1-1 Mediates Resistance to a Subset of Root Pathogens in Medicago truncatula without Adversely Affecting Symbiosis with Rhizobia</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Anderson, Jonathan P ; Lichtenzveig, Judith ; Gleason, Cynthia ; Oliver, Richard P ; Singh, Karam B</creator><creatorcontrib>Anderson, Jonathan P ; Lichtenzveig, Judith ; Gleason, Cynthia ; Oliver, Richard P ; Singh, Karam B</creatorcontrib><description>The fungal necrotrophic pathogen Rhizoctonia solani is a significant constraint to a range of crops as diverse as cereals, canola, and legumes. Despite wide-ranging germplasm screens in many of these crops, no strong genetic resistance has been identified, suggesting that alternative strategies to improve resistance are required. In this study, we characterize moderate resistance to R. solani anastomosis group 8 identified in Medicago truncatula. The activity of the ethylene- and jasmonate-responsive GCC box promoter element was associated with moderate resistance, as was the induction of the B-3 subgroup of ethylene response transcription factors (ERFs). Genes of the B-1 subgroup showed no significant response to R. solani infection. Overexpression of a B-3 ERF, MtERF1-1, in Medicago roots increased resistance to R. solani as well as an oomycete root pathogen, Phytophthora medicaginis, but not root knot nematode. These results indicate that targeting specific regulators of ethylene defense may enhance resistance to an important subset of root pathogens. We also demonstrate that overexpression of MtERF1-1 enhances disease resistance without apparent impact on nodulation in the A17 background, while overexpression in sickle reduced the hypernodulation phenotype. This suggests that under normal regulation of nodulation, enhanced resistance to root diseases can be uncoupled from symbiotic plant-microbe interactions in the same tissue and that ethylene/ERF regulation of nodule number is distinct from the defenses regulated by B-3 ERFs. Furthermore, unlike the stunted phenotype previously described for Arabidopsis (Arabidopsis thaliana) ubiquitously overexpressing B-3 ERFs, overexpression of MtERF1-1 in M. truncatula roots did not show adverse effects on plant development.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.110.163949</identifier><identifier>PMID: 20713618</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Arabidopsis thaliana ; Bacteria ; Biological and medical sciences ; Disease resistance ; Ethylenes - pharmacology ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Infections ; Inoculation ; Leaves ; Medicago ; Medicago truncatula ; Medicago truncatula - genetics ; Medicago truncatula - growth &amp; development ; Medicago truncatula - immunology ; Medicago truncatula - microbiology ; Nematoda ; Oomycetes ; Pathogens ; Phytopathology. Animal pests. Plant and forest protection ; Phytophthora medicaginis ; Plant diseases ; Plant Immunity ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Root Nodulation ; Plant roots ; Plant Roots - microbiology ; Plants ; PLANTS INTERACTING WITH OTHER ORGANISMS ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - growth &amp; development ; Plants, Genetically Modified - immunology ; Plants, Genetically Modified - microbiology ; Promoter Regions, Genetic ; Rhizoctonia - pathogenicity ; Rhizoctonia solani ; RNA, Plant - genetics ; Seedlings ; Sinorhizobium meliloti - physiology ; Skis ; Symbiosis ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Plant physiology (Bethesda), 2010-10, Vol.154 (2), p.861-873</ispartof><rights>2010 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2010 American Society of Plant Biologists 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-74334347d32f60c1a4eff481459a48991882203ca927266c77937899dcf91a313</citedby><cites>FETCH-LOGICAL-c455t-74334347d32f60c1a4eff481459a48991882203ca927266c77937899dcf91a313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20779838$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20779838$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23296929$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20713618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Jonathan P</creatorcontrib><creatorcontrib>Lichtenzveig, Judith</creatorcontrib><creatorcontrib>Gleason, Cynthia</creatorcontrib><creatorcontrib>Oliver, Richard P</creatorcontrib><creatorcontrib>Singh, Karam B</creatorcontrib><title>B-3 Ethylene Response Factor MtERF1-1 Mediates Resistance to a Subset of Root Pathogens in Medicago truncatula without Adversely Affecting Symbiosis with Rhizobia</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The fungal necrotrophic pathogen Rhizoctonia solani is a significant constraint to a range of crops as diverse as cereals, canola, and legumes. Despite wide-ranging germplasm screens in many of these crops, no strong genetic resistance has been identified, suggesting that alternative strategies to improve resistance are required. In this study, we characterize moderate resistance to R. solani anastomosis group 8 identified in Medicago truncatula. The activity of the ethylene- and jasmonate-responsive GCC box promoter element was associated with moderate resistance, as was the induction of the B-3 subgroup of ethylene response transcription factors (ERFs). Genes of the B-1 subgroup showed no significant response to R. solani infection. Overexpression of a B-3 ERF, MtERF1-1, in Medicago roots increased resistance to R. solani as well as an oomycete root pathogen, Phytophthora medicaginis, but not root knot nematode. These results indicate that targeting specific regulators of ethylene defense may enhance resistance to an important subset of root pathogens. We also demonstrate that overexpression of MtERF1-1 enhances disease resistance without apparent impact on nodulation in the A17 background, while overexpression in sickle reduced the hypernodulation phenotype. This suggests that under normal regulation of nodulation, enhanced resistance to root diseases can be uncoupled from symbiotic plant-microbe interactions in the same tissue and that ethylene/ERF regulation of nodule number is distinct from the defenses regulated by B-3 ERFs. Furthermore, unlike the stunted phenotype previously described for Arabidopsis (Arabidopsis thaliana) ubiquitously overexpressing B-3 ERFs, overexpression of MtERF1-1 in M. truncatula roots did not show adverse effects on plant development.</description><subject>Arabidopsis thaliana</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Disease resistance</subject><subject>Ethylenes - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Infections</subject><subject>Inoculation</subject><subject>Leaves</subject><subject>Medicago</subject><subject>Medicago truncatula</subject><subject>Medicago truncatula - genetics</subject><subject>Medicago truncatula - growth &amp; development</subject><subject>Medicago truncatula - immunology</subject><subject>Medicago truncatula - microbiology</subject><subject>Nematoda</subject><subject>Oomycetes</subject><subject>Pathogens</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Phytophthora medicaginis</subject><subject>Plant diseases</subject><subject>Plant Immunity</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Root Nodulation</subject><subject>Plant roots</subject><subject>Plant Roots - microbiology</subject><subject>Plants</subject><subject>PLANTS INTERACTING WITH OTHER ORGANISMS</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - growth &amp; development</subject><subject>Plants, Genetically Modified - immunology</subject><subject>Plants, Genetically Modified - microbiology</subject><subject>Promoter Regions, Genetic</subject><subject>Rhizoctonia - pathogenicity</subject><subject>Rhizoctonia solani</subject><subject>RNA, Plant - genetics</subject><subject>Seedlings</subject><subject>Sinorhizobium meliloti - physiology</subject><subject>Skis</subject><subject>Symbiosis</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kk-PEyEYxonRuLV69KhyMZ5m5d_MwMWkblo12Y2mdc-EUmjZTIdZYNbUj-MnlenUdb14egnvj-cB3geAlxidY4zY-64b6jmuqGDiEZjgkpKClIw_BhOE8hpxLs7AsxhvEEKYYvYUnBFUY1phPgG_PhYUztPu0JjWwKWJnW-jgQulkw_wKs2XC1xgeGU2TiUTB8LFpFptYPJQwVW_jiZBb-HS-wS_qbTzW9NG6NrjIa22HqbQt1qlvlHwh8tAn-Bsc2dCNM0Bzqw1Orl2C1eH_dr5rH-k4HLnfvq1U8_BE6uaaF6c6hRcL-bfLz4Xl18_fbmYXRaalWUqakYpo6zeUGIrpLFixlrGMSuFYlwIzDkhiGolSE2qSte1oHXe32grsKKYTsGHUbfr13uz0aZNQTWyC26vwkF65eS_ndbt5NbfSZJ_HmX3KXh3Egj-tjcxyb2L2jSNao3vo-Q1wUSIo9X_ybqsqooLIjJZjKQOPsZg7P19MJJDAGTXDVWOAcj864ePuKf_TDwDb0-Ailo1NuRZuviXo0RUo_GrkbuJOQkPdWrB6aDzZuxb5aXahqxxvSI5YAhzwbMG_Q3r3sxl</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Anderson, Jonathan P</creator><creator>Lichtenzveig, Judith</creator><creator>Gleason, Cynthia</creator><creator>Oliver, Richard P</creator><creator>Singh, Karam B</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20101001</creationdate><title>B-3 Ethylene Response Factor MtERF1-1 Mediates Resistance to a Subset of Root Pathogens in Medicago truncatula without Adversely Affecting Symbiosis with Rhizobia</title><author>Anderson, Jonathan P ; Lichtenzveig, Judith ; Gleason, Cynthia ; Oliver, Richard P ; Singh, Karam B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-74334347d32f60c1a4eff481459a48991882203ca927266c77937899dcf91a313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arabidopsis thaliana</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Disease resistance</topic><topic>Ethylenes - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Infections</topic><topic>Inoculation</topic><topic>Leaves</topic><topic>Medicago</topic><topic>Medicago truncatula</topic><topic>Medicago truncatula - genetics</topic><topic>Medicago truncatula - growth &amp; development</topic><topic>Medicago truncatula - immunology</topic><topic>Medicago truncatula - microbiology</topic><topic>Nematoda</topic><topic>Oomycetes</topic><topic>Pathogens</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Phytophthora medicaginis</topic><topic>Plant diseases</topic><topic>Plant Immunity</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Root Nodulation</topic><topic>Plant roots</topic><topic>Plant Roots - microbiology</topic><topic>Plants</topic><topic>PLANTS INTERACTING WITH OTHER ORGANISMS</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - growth &amp; development</topic><topic>Plants, Genetically Modified - immunology</topic><topic>Plants, Genetically Modified - microbiology</topic><topic>Promoter Regions, Genetic</topic><topic>Rhizoctonia - pathogenicity</topic><topic>Rhizoctonia solani</topic><topic>RNA, Plant - genetics</topic><topic>Seedlings</topic><topic>Sinorhizobium meliloti - physiology</topic><topic>Skis</topic><topic>Symbiosis</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Jonathan P</creatorcontrib><creatorcontrib>Lichtenzveig, Judith</creatorcontrib><creatorcontrib>Gleason, Cynthia</creatorcontrib><creatorcontrib>Oliver, Richard P</creatorcontrib><creatorcontrib>Singh, Karam B</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Jonathan P</au><au>Lichtenzveig, Judith</au><au>Gleason, Cynthia</au><au>Oliver, Richard P</au><au>Singh, Karam B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>B-3 Ethylene Response Factor MtERF1-1 Mediates Resistance to a Subset of Root Pathogens in Medicago truncatula without Adversely Affecting Symbiosis with Rhizobia</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>154</volume><issue>2</issue><spage>861</spage><epage>873</epage><pages>861-873</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The fungal necrotrophic pathogen Rhizoctonia solani is a significant constraint to a range of crops as diverse as cereals, canola, and legumes. Despite wide-ranging germplasm screens in many of these crops, no strong genetic resistance has been identified, suggesting that alternative strategies to improve resistance are required. In this study, we characterize moderate resistance to R. solani anastomosis group 8 identified in Medicago truncatula. The activity of the ethylene- and jasmonate-responsive GCC box promoter element was associated with moderate resistance, as was the induction of the B-3 subgroup of ethylene response transcription factors (ERFs). Genes of the B-1 subgroup showed no significant response to R. solani infection. Overexpression of a B-3 ERF, MtERF1-1, in Medicago roots increased resistance to R. solani as well as an oomycete root pathogen, Phytophthora medicaginis, but not root knot nematode. These results indicate that targeting specific regulators of ethylene defense may enhance resistance to an important subset of root pathogens. We also demonstrate that overexpression of MtERF1-1 enhances disease resistance without apparent impact on nodulation in the A17 background, while overexpression in sickle reduced the hypernodulation phenotype. This suggests that under normal regulation of nodulation, enhanced resistance to root diseases can be uncoupled from symbiotic plant-microbe interactions in the same tissue and that ethylene/ERF regulation of nodule number is distinct from the defenses regulated by B-3 ERFs. Furthermore, unlike the stunted phenotype previously described for Arabidopsis (Arabidopsis thaliana) ubiquitously overexpressing B-3 ERFs, overexpression of MtERF1-1 in M. truncatula roots did not show adverse effects on plant development.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>20713618</pmid><doi>10.1104/pp.110.163949</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2010-10, Vol.154 (2), p.861-873
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_proquest_miscellaneous_872129931
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Arabidopsis thaliana
Bacteria
Biological and medical sciences
Disease resistance
Ethylenes - pharmacology
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant
Infections
Inoculation
Leaves
Medicago
Medicago truncatula
Medicago truncatula - genetics
Medicago truncatula - growth & development
Medicago truncatula - immunology
Medicago truncatula - microbiology
Nematoda
Oomycetes
Pathogens
Phytopathology. Animal pests. Plant and forest protection
Phytophthora medicaginis
Plant diseases
Plant Immunity
Plant physiology and development
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Root Nodulation
Plant roots
Plant Roots - microbiology
Plants
PLANTS INTERACTING WITH OTHER ORGANISMS
Plants, Genetically Modified - genetics
Plants, Genetically Modified - growth & development
Plants, Genetically Modified - immunology
Plants, Genetically Modified - microbiology
Promoter Regions, Genetic
Rhizoctonia - pathogenicity
Rhizoctonia solani
RNA, Plant - genetics
Seedlings
Sinorhizobium meliloti - physiology
Skis
Symbiosis
Transcription Factors - genetics
Transcription Factors - metabolism
title B-3 Ethylene Response Factor MtERF1-1 Mediates Resistance to a Subset of Root Pathogens in Medicago truncatula without Adversely Affecting Symbiosis with Rhizobia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A10%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=B-3%20Ethylene%20Response%20Factor%20MtERF1-1%20Mediates%20Resistance%20to%20a%20Subset%20of%20Root%20Pathogens%20in%20Medicago%20truncatula%20without%20Adversely%20Affecting%20Symbiosis%20with%20Rhizobia&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Anderson,%20Jonathan%20P&rft.date=2010-10-01&rft.volume=154&rft.issue=2&rft.spage=861&rft.epage=873&rft.pages=861-873&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.110.163949&rft_dat=%3Cjstor_pubme%3E20779838%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-74334347d32f60c1a4eff481459a48991882203ca927266c77937899dcf91a313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=756668929&rft_id=info:pmid/20713618&rft_jstor_id=20779838&rfr_iscdi=true