Loading…

Toward an Optimal SMOS Ocean Salinity Inversion Algorithm

As part of the preparation for the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite mission, empirical sea-surface emissivity (forward) models have been used to retrieve sea-surface salinity from L-band brightness-temperature ( T B ) measurements. However, the salinity...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2009-07, Vol.6 (3), p.509-513
Main Authors: Gabarro, C., Portabella, M., Talone, M., Font, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-c681f134ca624d49a9805fb7a8f3d49d8361b04c7a0b41365e28cfd85d090abf3
cites cdi_FETCH-LOGICAL-c386t-c681f134ca624d49a9805fb7a8f3d49d8361b04c7a0b41365e28cfd85d090abf3
container_end_page 513
container_issue 3
container_start_page 509
container_title IEEE geoscience and remote sensing letters
container_volume 6
creator Gabarro, C.
Portabella, M.
Talone, M.
Font, J.
description As part of the preparation for the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite mission, empirical sea-surface emissivity (forward) models have been used to retrieve sea-surface salinity from L-band brightness-temperature ( T B ) measurements. However, the salinity inversion is not straightforward, and substantial effort is required to define the most appropriate cost function. Various Bayesian-based configurations of the cost function are examined, depending on whether a priori information is used in the inversion. A sensitivity analysis of T B to several geophysical parameters has been performed and has shown that the instrument has low sensitivity to the parameters that modulate the T B (including salinity). The SMOS end-to-end simulator is used to test the accuracy of different cost-function configurations. Currently, the general opinion in the SMOS community is that a partially constrained cost function, in which the salinity constraint is effectively removed, is the most appropriate for salinity retrieval. The purpose of this letter is to show that we found no evidence that such a configuration performs better than a fully constrained or a nonconstrained one. Moreover, in contrast to previous results, we found that the fully constrained inversion does not converge to the reference or auxiliary salinity value and produces the most accurate salinity retrievals of the tested configurations. Therefore, such a configuration should not be disregarded for future tests.
doi_str_mv 10.1109/LGRS.2009.2018490
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_872132769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4982707</ieee_id><sourcerecordid>2318747921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-c681f134ca624d49a9805fb7a8f3d49d8361b04c7a0b41365e28cfd85d090abf3</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhoMoWKs_QLwED3pKncnuZmePpWgtVAq2grdlm2w0JU3qbqr035vQ4sGDXuaLZ16YeYPgEmGACOpuOn6eD2IA1QYkruAo6KEQFIGQeNzVXERC0etpcOb9CiDmRLIXqEX9ZVwWmiqcbZpibcpw_jSbh7PUtqO5KYuqaHbhpPq0zhd1FQ7Lt9oVzfv6PDjJTentxSH3g5eH-8XoMZrOxpPRcBqljJImShPCHBlPTRLzjCujCES-lIZy1rYZsQSXwFNpYMmRJcLGlOYZiQwUmGXO-sHtXnfj6o-t9Y1eFz61ZWkqW2-9Jhkji2WiWvLmT5IJSDgh_gvGCFKR6BSvf4Greuuq9lxNCUrW_raDcA-lrvbe2VxvXPtIt9MIujNHd-bozhx9MKfdudrvFNbaH54riiVI9g15Q4iX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861735719</pqid></control><display><type>article</type><title>Toward an Optimal SMOS Ocean Salinity Inversion Algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gabarro, C. ; Portabella, M. ; Talone, M. ; Font, J.</creator><creatorcontrib>Gabarro, C. ; Portabella, M. ; Talone, M. ; Font, J.</creatorcontrib><description>As part of the preparation for the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite mission, empirical sea-surface emissivity (forward) models have been used to retrieve sea-surface salinity from L-band brightness-temperature ( T B ) measurements. However, the salinity inversion is not straightforward, and substantial effort is required to define the most appropriate cost function. Various Bayesian-based configurations of the cost function are examined, depending on whether a priori information is used in the inversion. A sensitivity analysis of T B to several geophysical parameters has been performed and has shown that the instrument has low sensitivity to the parameters that modulate the T B (including salinity). The SMOS end-to-end simulator is used to test the accuracy of different cost-function configurations. Currently, the general opinion in the SMOS community is that a partially constrained cost function, in which the salinity constraint is effectively removed, is the most appropriate for salinity retrieval. The purpose of this letter is to show that we found no evidence that such a configuration performs better than a fully constrained or a nonconstrained one. Moreover, in contrast to previous results, we found that the fully constrained inversion does not converge to the reference or auxiliary salinity value and produces the most accurate salinity retrievals of the tested configurations. Therefore, such a configuration should not be disregarded for future tests.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2009.2018490</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Constraints ; Cost function ; Geophysical measurements ; Inversion algorithm ; Inversions ; L-band ; Mathematical models ; Moisture measurement ; Ocean salinity ; Oceans ; Retrieval ; Salinity ; Satellites ; Sea measurements ; Sensitivity analysis ; SMOS ; SMOS mission ; Space missions ; Studies ; Testing</subject><ispartof>IEEE geoscience and remote sensing letters, 2009-07, Vol.6 (3), p.509-513</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-c681f134ca624d49a9805fb7a8f3d49d8361b04c7a0b41365e28cfd85d090abf3</citedby><cites>FETCH-LOGICAL-c386t-c681f134ca624d49a9805fb7a8f3d49d8361b04c7a0b41365e28cfd85d090abf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4982707$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Gabarro, C.</creatorcontrib><creatorcontrib>Portabella, M.</creatorcontrib><creatorcontrib>Talone, M.</creatorcontrib><creatorcontrib>Font, J.</creatorcontrib><title>Toward an Optimal SMOS Ocean Salinity Inversion Algorithm</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>As part of the preparation for the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite mission, empirical sea-surface emissivity (forward) models have been used to retrieve sea-surface salinity from L-band brightness-temperature ( T B ) measurements. However, the salinity inversion is not straightforward, and substantial effort is required to define the most appropriate cost function. Various Bayesian-based configurations of the cost function are examined, depending on whether a priori information is used in the inversion. A sensitivity analysis of T B to several geophysical parameters has been performed and has shown that the instrument has low sensitivity to the parameters that modulate the T B (including salinity). The SMOS end-to-end simulator is used to test the accuracy of different cost-function configurations. Currently, the general opinion in the SMOS community is that a partially constrained cost function, in which the salinity constraint is effectively removed, is the most appropriate for salinity retrieval. The purpose of this letter is to show that we found no evidence that such a configuration performs better than a fully constrained or a nonconstrained one. Moreover, in contrast to previous results, we found that the fully constrained inversion does not converge to the reference or auxiliary salinity value and produces the most accurate salinity retrievals of the tested configurations. Therefore, such a configuration should not be disregarded for future tests.</description><subject>Algorithms</subject><subject>Constraints</subject><subject>Cost function</subject><subject>Geophysical measurements</subject><subject>Inversion algorithm</subject><subject>Inversions</subject><subject>L-band</subject><subject>Mathematical models</subject><subject>Moisture measurement</subject><subject>Ocean salinity</subject><subject>Oceans</subject><subject>Retrieval</subject><subject>Salinity</subject><subject>Satellites</subject><subject>Sea measurements</subject><subject>Sensitivity analysis</subject><subject>SMOS</subject><subject>SMOS mission</subject><subject>Space missions</subject><subject>Studies</subject><subject>Testing</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU1Lw0AQhoMoWKs_QLwED3pKncnuZmePpWgtVAq2grdlm2w0JU3qbqr035vQ4sGDXuaLZ16YeYPgEmGACOpuOn6eD2IA1QYkruAo6KEQFIGQeNzVXERC0etpcOb9CiDmRLIXqEX9ZVwWmiqcbZpibcpw_jSbh7PUtqO5KYuqaHbhpPq0zhd1FQ7Lt9oVzfv6PDjJTentxSH3g5eH-8XoMZrOxpPRcBqljJImShPCHBlPTRLzjCujCES-lIZy1rYZsQSXwFNpYMmRJcLGlOYZiQwUmGXO-sHtXnfj6o-t9Y1eFz61ZWkqW2-9Jhkji2WiWvLmT5IJSDgh_gvGCFKR6BSvf4Greuuq9lxNCUrW_raDcA-lrvbe2VxvXPtIt9MIujNHd-bozhx9MKfdudrvFNbaH54riiVI9g15Q4iX</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Gabarro, C.</creator><creator>Portabella, M.</creator><creator>Talone, M.</creator><creator>Font, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20090701</creationdate><title>Toward an Optimal SMOS Ocean Salinity Inversion Algorithm</title><author>Gabarro, C. ; Portabella, M. ; Talone, M. ; Font, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-c681f134ca624d49a9805fb7a8f3d49d8361b04c7a0b41365e28cfd85d090abf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Constraints</topic><topic>Cost function</topic><topic>Geophysical measurements</topic><topic>Inversion algorithm</topic><topic>Inversions</topic><topic>L-band</topic><topic>Mathematical models</topic><topic>Moisture measurement</topic><topic>Ocean salinity</topic><topic>Oceans</topic><topic>Retrieval</topic><topic>Salinity</topic><topic>Satellites</topic><topic>Sea measurements</topic><topic>Sensitivity analysis</topic><topic>SMOS</topic><topic>SMOS mission</topic><topic>Space missions</topic><topic>Studies</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gabarro, C.</creatorcontrib><creatorcontrib>Portabella, M.</creatorcontrib><creatorcontrib>Talone, M.</creatorcontrib><creatorcontrib>Font, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabarro, C.</au><au>Portabella, M.</au><au>Talone, M.</au><au>Font, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward an Optimal SMOS Ocean Salinity Inversion Algorithm</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>6</volume><issue>3</issue><spage>509</spage><epage>513</epage><pages>509-513</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>As part of the preparation for the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite mission, empirical sea-surface emissivity (forward) models have been used to retrieve sea-surface salinity from L-band brightness-temperature ( T B ) measurements. However, the salinity inversion is not straightforward, and substantial effort is required to define the most appropriate cost function. Various Bayesian-based configurations of the cost function are examined, depending on whether a priori information is used in the inversion. A sensitivity analysis of T B to several geophysical parameters has been performed and has shown that the instrument has low sensitivity to the parameters that modulate the T B (including salinity). The SMOS end-to-end simulator is used to test the accuracy of different cost-function configurations. Currently, the general opinion in the SMOS community is that a partially constrained cost function, in which the salinity constraint is effectively removed, is the most appropriate for salinity retrieval. The purpose of this letter is to show that we found no evidence that such a configuration performs better than a fully constrained or a nonconstrained one. Moreover, in contrast to previous results, we found that the fully constrained inversion does not converge to the reference or auxiliary salinity value and produces the most accurate salinity retrievals of the tested configurations. Therefore, such a configuration should not be disregarded for future tests.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2009.2018490</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2009-07, Vol.6 (3), p.509-513
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_miscellaneous_872132769
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Constraints
Cost function
Geophysical measurements
Inversion algorithm
Inversions
L-band
Mathematical models
Moisture measurement
Ocean salinity
Oceans
Retrieval
Salinity
Satellites
Sea measurements
Sensitivity analysis
SMOS
SMOS mission
Space missions
Studies
Testing
title Toward an Optimal SMOS Ocean Salinity Inversion Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20an%20Optimal%20SMOS%20Ocean%20Salinity%20Inversion%20Algorithm&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Gabarro,%20C.&rft.date=2009-07-01&rft.volume=6&rft.issue=3&rft.spage=509&rft.epage=513&rft.pages=509-513&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2009.2018490&rft_dat=%3Cproquest_cross%3E2318747921%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-c681f134ca624d49a9805fb7a8f3d49d8361b04c7a0b41365e28cfd85d090abf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861735719&rft_id=info:pmid/&rft_ieee_id=4982707&rfr_iscdi=true