Loading…
Spatial Distributions and Interstellar Reaction Processes
Methyl formate presents a challenge for the conventional chemical mechanisms assumed to guide interstellar organic chemistry. Previous studies of potential formation pathways for methyl formate in interstellar clouds ruled out gas-phase chemistry as a major production route, and more recent chemical...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2011-06, Vol.115 (24), p.6472-6480 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Methyl formate presents a challenge for the conventional chemical mechanisms assumed to guide interstellar organic chemistry. Previous studies of potential formation pathways for methyl formate in interstellar clouds ruled out gas-phase chemistry as a major production route, and more recent chemical kinetics models indicate that it may form efficiently from radical–radical chemistry on ice surfaces. Yet, recent chemical imaging studies of methyl formate and molecules potentially related to its formation suggest that it may form through previously unexplored gas-phase chemistry. Motivated by these findings, two new gas-phase ion-molecule formation routes are proposed and characterized using electronic structure theory with conformational specificity. The proposed reactions, acid-catalyzed Fisher esterification and methyl cation transfer, both produce the less stable trans-conformational isomer of protonated methyl formate in relatively high abundance under the kinetically controlled conditions relevant to interstellar chemistry. Gas-phase neutral methyl formate can be produced from its protonated counterpart through either a dissociative electron recombination reaction or a proton transfer reaction to a molecule with larger proton affinity. Retention (or partial retention) of the conformation in these neutralization reactions would yield trans-methyl formate in an abundance that exceeds predictions under thermodynamic equilibrium at typical interstellar temperatures of ≤100 K. For this reason, this conformer may prove to be an excellent probe of gas-phase chemistry in interstellar clouds. Motivated by new theoretical predictions, the rotational spectrum of trans-methyl formate has been measured for the first time in the laboratory, and seven lines have now been detected in the interstellar medium using the publicly available PRIMOS survey from the NRAO Green Bank Telescope. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp200539b |