Loading…

New perspectives on the Mesozoic seed fern order Corystospermales based on attached organs from the Triassic of Antarctica

A new Triassic corystosperm is described from the Shackleton Glacier region of Antarctica. The compression fossils include cupulate organs (Umkomasia uniramia) and leaves (Dicroidium odontopteroides) attached to short shoot-bearing branches. The cupulate organs occur in groups near the apices of the...

Full description

Saved in:
Bibliographic Details
Published in:American journal of botany 2000-06, Vol.87 (6), p.757-768
Main Authors: Axsmith, Brian J., Taylor, Edith L., Taylor, Thomas N., Cuneo, N. Ruben
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new Triassic corystosperm is described from the Shackleton Glacier region of Antarctica. The compression fossils include cupulate organs (Umkomasia uniramia) and leaves (Dicroidium odontopteroides) attached to short shoot-bearing branches. The cupulate organs occur in groups near the apices of the short shoots, and each consists of a single axis with a pair of bracts and a subapical whorl of five to eight ovoid cupules. This unique architecture indicates that the cupules are individual megasporophylls rather than leaflets of a compound megasporophyll. A branch bearing an attached D. odontopteroides leaf provides the first unequivocal evidence that Umkomasia cupulate organs and Dicroidium leaves were produced by the same plants. Although this had previously been assumed based on organ associations, the new specimens are important in demonstrating that a single species of corystosperm produced the unique cupulate organs described here and the geographically and stratigraphically widespread and common D. odontopteroides leaf. Therefore, biostratigraphic, paleoecological, and phylogenetic studies that treat Dicroidium leaf morphospecies as proxies for biological species of entire plants should be reconsidered. Phylogenetic analysis suggests that the corystosperm cupule is an unlikely homologue for the angiosperm carpel or outer integument.
ISSN:0002-9122
1537-2197
DOI:10.2307/2656883