Loading…

Effect of a mitochondria-targeted vitamin E derivative on mitochondrial alteration and systemic oxidative stress in mice

The objective of the present study was to determine whether a mitochondria-targeted vitamin E derivative (MitoVit E) would affect certain mitochondrial parameters, as well as systemic oxidative stress. A total of sixty-four mice were fed a high-fat (HF) diet for 5 weeks. They were then switched to e...

Full description

Saved in:
Bibliographic Details
Published in:British journal of nutrition 2011-07, Vol.106 (1), p.87-95
Main Authors: Mao, Gaowei, Kraus, George A., Kim, Ikyon, Spurlock, Michael E., Bailey, Theodore B., Beitz, Donald C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of the present study was to determine whether a mitochondria-targeted vitamin E derivative (MitoVit E) would affect certain mitochondrial parameters, as well as systemic oxidative stress. A total of sixty-four mice were fed a high-fat (HF) diet for 5 weeks. They were then switched to either a low-fat (LF) or a medium-fat (MF) diet, and administered orally with MitoVit E (40 mg MitoVit E/kg body weight) or drug vehicle (10 % (v/v) ethanol in 0·9 % (w/v) NaCl solution), every other day for 5 weeks. Mitochondrial ATP and H2O2 production rates in both the liver and the gastrocnemius were not affected by MitoVit E administration in either LF or MF diet-fed mice. However, the number and average size of the subsarcolemmal mitochondria, but not the intermyofibrillar mitochondria, from the soleus muscle were significantly higher in the MF group receiving MitoVit E (MF-E) than in the MF group receiving vehicle only (MF-C). After the mice were switched from the HF diet to the four dietary treatments (LF-C, LF-E, MF-C and MF-E), the decrease in urinary isoprostane concentration was significantly greater in the LF-E group than in the other three groups during the whole study (weeks 6–10). In addition, MitoVit E significantly increased plasma superoxide dismutase (SOD) activity in the MF diet-fed group without affecting plasma glutathione peroxidase activity or H2O2 levels. Overall, these data suggest that MitoVit E affects subsarcolemmal mitochondrial density and systemic oxidative stress parameters such as plasma SOD activity and urinary isoprostane concentration.
ISSN:0007-1145
1475-2662
DOI:10.1017/S0007114510005830