Loading…

Rectification in donor–acceptor molecular junctions

We perform density functional theory (DFT) calculations on molecular junctions consisting of a single molecule between two Au(111) electrodes. The molecules consist of an alkane or aryl bridge connecting acceptor, donor or thiol endgroups in various combinations. The molecular geometries are optimiz...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2008-09, Vol.20 (37), p.374106-374106
Main Authors: Ford, M J, Hoft, R C, McDonagh, A M, Cortie, M B
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We perform density functional theory (DFT) calculations on molecular junctions consisting of a single molecule between two Au(111) electrodes. The molecules consist of an alkane or aryl bridge connecting acceptor, donor or thiol endgroups in various combinations. The molecular geometries are optimized and wavefunctions and eigenstates of the junction calculated using the DFT method, and then the electron transport properties for the junction are calculated within the non-equilibrium Green's function (NEGF) formalism. The current-voltage or i(V) characteristics for the various molecules are then compared. Rectification is observed for these molecules, particularly for the donor-bridge-acceptor case where the bridge is an alkane, with rectification being in the same direction as the original findings of Aviram and Ratner (1974 Chem. Phys. Lett. 29 277-83), at least for relatively large negative and positive applied bias. However, at smaller bias rectification is in the opposite direction and is attributed to the lowest unoccupied orbital associated with the acceptor group.
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/20/37/374106