Loading…
Disease Pathways and Novel Therapeutic Targets in Hypertrophic Cardiomyopathy
As described in earlier reviews in this series on the molecular basis of hypertrophic cardiomyopathy (HCM), HCM is one of the archetypal monogenic cardiovascular disorders to be understood at the molecular level. Twenty years after the discovery of the first HCM disease gene, genetic studies still c...
Saved in:
Published in: | Circulation research 2011-06, Vol.109 (1), p.86-96 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3 |
container_end_page | 96 |
container_issue | 1 |
container_start_page | 86 |
container_title | Circulation research |
container_volume | 109 |
creator | Ashrafian, Houman McKenna, William J Watkins, Hugh |
description | As described in earlier reviews in this series on the molecular basis of hypertrophic cardiomyopathy (HCM), HCM is one of the archetypal monogenic cardiovascular disorders to be understood at the molecular level. Twenty years after the discovery of the first HCM disease gene, genetic studies still confirm that HCM is principally a disease of the sarcomere. At the biophysical level, myofilament mutations generally enhance Ca sensitivity, maximal force production, and ATPase activity. These defects ultimately appear to converge on energy deficiency and altered Ca handling as major common paths leading to the anatomic (hypertrophy, myofiber disarray, and fibrosis) and functional features (pathological signaling and diastolic dysfunction) characteristic of HCM. In this review, we provide an account of the consequences of HCM mutations and describe how specifically targeting these molecular features has already yielded early promise for novel therapies for HCM. Although substantial efforts are still required to understand the molecular link between HCM mutations and their clinical consequences, HCM endures as an exemplar of how novel insights derived from molecular characterization of Mendelian disorders can inform the understanding of biological processes and translate into rational therapies. |
doi_str_mv | 10.1161/CIRCRESAHA.111.242974 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_873706276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>873706276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3</originalsourceid><addsrcrecordid>eNpFkUtPwzAQhC0EouXxE0C5IE4pXtuJk2MVCq3ES6WcLSfdkEDaBDuhyr_HVQucrBl_49WOCbkAOgII4SaZzZP55HU8HTsNIyZYLMUBGULAhC8CCYdkSCmNfck5HZATaz8oBcFZfEwGDKS7CuiQPN6WFrVF70W3xUb31tPrpfdUf2PlLQo0usGuLTNvoc07ttYr1960b9C0pm4K5yfaLMt61deNy_dn5CjXlcXz_XlK3u4mi2TqPzzfz5Lxg58FIgIfOEQcWBAJyIGmUR4Gccoky2WkIYqBhlkWAE_F1gXBBAiMY5bmKY_TpdD8lFzv3m1M_dWhbdWqtBlWlV5j3VkVSS5pyGToyGBHZqa21mCuGlOutOkVULUtUv0X6TSoXZEud7mf0KUrXP6lfptzwNUe0DbTVW70OivtPyc4Z5xFjhM7blNXLRr7WXUbNKpAXbWFcj9EOQXmMwpubSao7xwA_gPIPIpr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873706276</pqid></control><display><type>article</type><title>Disease Pathways and Novel Therapeutic Targets in Hypertrophic Cardiomyopathy</title><source>Freely Accessible Journals</source><creator>Ashrafian, Houman ; McKenna, William J ; Watkins, Hugh</creator><contributor>Robbins, Jeffery</contributor><creatorcontrib>Ashrafian, Houman ; McKenna, William J ; Watkins, Hugh ; Robbins, Jeffery</creatorcontrib><description>As described in earlier reviews in this series on the molecular basis of hypertrophic cardiomyopathy (HCM), HCM is one of the archetypal monogenic cardiovascular disorders to be understood at the molecular level. Twenty years after the discovery of the first HCM disease gene, genetic studies still confirm that HCM is principally a disease of the sarcomere. At the biophysical level, myofilament mutations generally enhance Ca sensitivity, maximal force production, and ATPase activity. These defects ultimately appear to converge on energy deficiency and altered Ca handling as major common paths leading to the anatomic (hypertrophy, myofiber disarray, and fibrosis) and functional features (pathological signaling and diastolic dysfunction) characteristic of HCM. In this review, we provide an account of the consequences of HCM mutations and describe how specifically targeting these molecular features has already yielded early promise for novel therapies for HCM. Although substantial efforts are still required to understand the molecular link between HCM mutations and their clinical consequences, HCM endures as an exemplar of how novel insights derived from molecular characterization of Mendelian disorders can inform the understanding of biological processes and translate into rational therapies.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.111.242974</identifier><identifier>PMID: 21700950</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: American Heart Association, Inc</publisher><subject>Actin Cytoskeleton - physiology ; Animals ; Biological and medical sciences ; Calcium - metabolism ; Cardiology. Vascular system ; Cardiomyopathy, Hypertrophic - drug therapy ; Cardiomyopathy, Hypertrophic - etiology ; Cardiomyopathy, Hypertrophic - genetics ; Energy Metabolism ; Fundamental and applied biological sciences. Psychology ; Heart ; Humans ; Medical sciences ; Mutation ; Myocarditis. Cardiomyopathies ; Myocardium - metabolism ; Signal Transduction ; Vertebrates: cardiovascular system</subject><ispartof>Circulation research, 2011-06, Vol.109 (1), p.86-96</ispartof><rights>2011 American Heart Association, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3</citedby><cites>FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24332328$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21700950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Robbins, Jeffery</contributor><creatorcontrib>Ashrafian, Houman</creatorcontrib><creatorcontrib>McKenna, William J</creatorcontrib><creatorcontrib>Watkins, Hugh</creatorcontrib><title>Disease Pathways and Novel Therapeutic Targets in Hypertrophic Cardiomyopathy</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>As described in earlier reviews in this series on the molecular basis of hypertrophic cardiomyopathy (HCM), HCM is one of the archetypal monogenic cardiovascular disorders to be understood at the molecular level. Twenty years after the discovery of the first HCM disease gene, genetic studies still confirm that HCM is principally a disease of the sarcomere. At the biophysical level, myofilament mutations generally enhance Ca sensitivity, maximal force production, and ATPase activity. These defects ultimately appear to converge on energy deficiency and altered Ca handling as major common paths leading to the anatomic (hypertrophy, myofiber disarray, and fibrosis) and functional features (pathological signaling and diastolic dysfunction) characteristic of HCM. In this review, we provide an account of the consequences of HCM mutations and describe how specifically targeting these molecular features has already yielded early promise for novel therapies for HCM. Although substantial efforts are still required to understand the molecular link between HCM mutations and their clinical consequences, HCM endures as an exemplar of how novel insights derived from molecular characterization of Mendelian disorders can inform the understanding of biological processes and translate into rational therapies.</description><subject>Actin Cytoskeleton - physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium - metabolism</subject><subject>Cardiology. Vascular system</subject><subject>Cardiomyopathy, Hypertrophic - drug therapy</subject><subject>Cardiomyopathy, Hypertrophic - etiology</subject><subject>Cardiomyopathy, Hypertrophic - genetics</subject><subject>Energy Metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Heart</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Mutation</subject><subject>Myocarditis. Cardiomyopathies</subject><subject>Myocardium - metabolism</subject><subject>Signal Transduction</subject><subject>Vertebrates: cardiovascular system</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFkUtPwzAQhC0EouXxE0C5IE4pXtuJk2MVCq3ES6WcLSfdkEDaBDuhyr_HVQucrBl_49WOCbkAOgII4SaZzZP55HU8HTsNIyZYLMUBGULAhC8CCYdkSCmNfck5HZATaz8oBcFZfEwGDKS7CuiQPN6WFrVF70W3xUb31tPrpfdUf2PlLQo0usGuLTNvoc07ttYr1960b9C0pm4K5yfaLMt61deNy_dn5CjXlcXz_XlK3u4mi2TqPzzfz5Lxg58FIgIfOEQcWBAJyIGmUR4Gccoky2WkIYqBhlkWAE_F1gXBBAiMY5bmKY_TpdD8lFzv3m1M_dWhbdWqtBlWlV5j3VkVSS5pyGToyGBHZqa21mCuGlOutOkVULUtUv0X6TSoXZEud7mf0KUrXP6lfptzwNUe0DbTVW70OivtPyc4Z5xFjhM7blNXLRr7WXUbNKpAXbWFcj9EOQXmMwpubSao7xwA_gPIPIpr</recordid><startdate>20110624</startdate><enddate>20110624</enddate><creator>Ashrafian, Houman</creator><creator>McKenna, William J</creator><creator>Watkins, Hugh</creator><general>American Heart Association, Inc</general><general>Lippincott Williams & Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110624</creationdate><title>Disease Pathways and Novel Therapeutic Targets in Hypertrophic Cardiomyopathy</title><author>Ashrafian, Houman ; McKenna, William J ; Watkins, Hugh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Actin Cytoskeleton - physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium - metabolism</topic><topic>Cardiology. Vascular system</topic><topic>Cardiomyopathy, Hypertrophic - drug therapy</topic><topic>Cardiomyopathy, Hypertrophic - etiology</topic><topic>Cardiomyopathy, Hypertrophic - genetics</topic><topic>Energy Metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Heart</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Mutation</topic><topic>Myocarditis. Cardiomyopathies</topic><topic>Myocardium - metabolism</topic><topic>Signal Transduction</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashrafian, Houman</creatorcontrib><creatorcontrib>McKenna, William J</creatorcontrib><creatorcontrib>Watkins, Hugh</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashrafian, Houman</au><au>McKenna, William J</au><au>Watkins, Hugh</au><au>Robbins, Jeffery</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disease Pathways and Novel Therapeutic Targets in Hypertrophic Cardiomyopathy</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2011-06-24</date><risdate>2011</risdate><volume>109</volume><issue>1</issue><spage>86</spage><epage>96</epage><pages>86-96</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>As described in earlier reviews in this series on the molecular basis of hypertrophic cardiomyopathy (HCM), HCM is one of the archetypal monogenic cardiovascular disorders to be understood at the molecular level. Twenty years after the discovery of the first HCM disease gene, genetic studies still confirm that HCM is principally a disease of the sarcomere. At the biophysical level, myofilament mutations generally enhance Ca sensitivity, maximal force production, and ATPase activity. These defects ultimately appear to converge on energy deficiency and altered Ca handling as major common paths leading to the anatomic (hypertrophy, myofiber disarray, and fibrosis) and functional features (pathological signaling and diastolic dysfunction) characteristic of HCM. In this review, we provide an account of the consequences of HCM mutations and describe how specifically targeting these molecular features has already yielded early promise for novel therapies for HCM. Although substantial efforts are still required to understand the molecular link between HCM mutations and their clinical consequences, HCM endures as an exemplar of how novel insights derived from molecular characterization of Mendelian disorders can inform the understanding of biological processes and translate into rational therapies.</abstract><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>21700950</pmid><doi>10.1161/CIRCRESAHA.111.242974</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7330 |
ispartof | Circulation research, 2011-06, Vol.109 (1), p.86-96 |
issn | 0009-7330 1524-4571 |
language | eng |
recordid | cdi_proquest_miscellaneous_873706276 |
source | Freely Accessible Journals |
subjects | Actin Cytoskeleton - physiology Animals Biological and medical sciences Calcium - metabolism Cardiology. Vascular system Cardiomyopathy, Hypertrophic - drug therapy Cardiomyopathy, Hypertrophic - etiology Cardiomyopathy, Hypertrophic - genetics Energy Metabolism Fundamental and applied biological sciences. Psychology Heart Humans Medical sciences Mutation Myocarditis. Cardiomyopathies Myocardium - metabolism Signal Transduction Vertebrates: cardiovascular system |
title | Disease Pathways and Novel Therapeutic Targets in Hypertrophic Cardiomyopathy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disease%20Pathways%20and%20Novel%20Therapeutic%20Targets%20in%20Hypertrophic%20Cardiomyopathy&rft.jtitle=Circulation%20research&rft.au=Ashrafian,%20Houman&rft.date=2011-06-24&rft.volume=109&rft.issue=1&rft.spage=86&rft.epage=96&rft.pages=86-96&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/CIRCRESAHA.111.242974&rft_dat=%3Cproquest_cross%3E873706276%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=873706276&rft_id=info:pmid/21700950&rfr_iscdi=true |