Loading…

Disease Pathways and Novel Therapeutic Targets in Hypertrophic Cardiomyopathy

As described in earlier reviews in this series on the molecular basis of hypertrophic cardiomyopathy (HCM), HCM is one of the archetypal monogenic cardiovascular disorders to be understood at the molecular level. Twenty years after the discovery of the first HCM disease gene, genetic studies still c...

Full description

Saved in:
Bibliographic Details
Published in:Circulation research 2011-06, Vol.109 (1), p.86-96
Main Authors: Ashrafian, Houman, McKenna, William J, Watkins, Hugh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3
cites cdi_FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3
container_end_page 96
container_issue 1
container_start_page 86
container_title Circulation research
container_volume 109
creator Ashrafian, Houman
McKenna, William J
Watkins, Hugh
description As described in earlier reviews in this series on the molecular basis of hypertrophic cardiomyopathy (HCM), HCM is one of the archetypal monogenic cardiovascular disorders to be understood at the molecular level. Twenty years after the discovery of the first HCM disease gene, genetic studies still confirm that HCM is principally a disease of the sarcomere. At the biophysical level, myofilament mutations generally enhance Ca sensitivity, maximal force production, and ATPase activity. These defects ultimately appear to converge on energy deficiency and altered Ca handling as major common paths leading to the anatomic (hypertrophy, myofiber disarray, and fibrosis) and functional features (pathological signaling and diastolic dysfunction) characteristic of HCM. In this review, we provide an account of the consequences of HCM mutations and describe how specifically targeting these molecular features has already yielded early promise for novel therapies for HCM. Although substantial efforts are still required to understand the molecular link between HCM mutations and their clinical consequences, HCM endures as an exemplar of how novel insights derived from molecular characterization of Mendelian disorders can inform the understanding of biological processes and translate into rational therapies.
doi_str_mv 10.1161/CIRCRESAHA.111.242974
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_873706276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>873706276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3</originalsourceid><addsrcrecordid>eNpFkUtPwzAQhC0EouXxE0C5IE4pXtuJk2MVCq3ES6WcLSfdkEDaBDuhyr_HVQucrBl_49WOCbkAOgII4SaZzZP55HU8HTsNIyZYLMUBGULAhC8CCYdkSCmNfck5HZATaz8oBcFZfEwGDKS7CuiQPN6WFrVF70W3xUb31tPrpfdUf2PlLQo0usGuLTNvoc07ttYr1960b9C0pm4K5yfaLMt61deNy_dn5CjXlcXz_XlK3u4mi2TqPzzfz5Lxg58FIgIfOEQcWBAJyIGmUR4Gccoky2WkIYqBhlkWAE_F1gXBBAiMY5bmKY_TpdD8lFzv3m1M_dWhbdWqtBlWlV5j3VkVSS5pyGToyGBHZqa21mCuGlOutOkVULUtUv0X6TSoXZEud7mf0KUrXP6lfptzwNUe0DbTVW70OivtPyc4Z5xFjhM7blNXLRr7WXUbNKpAXbWFcj9EOQXmMwpubSao7xwA_gPIPIpr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873706276</pqid></control><display><type>article</type><title>Disease Pathways and Novel Therapeutic Targets in Hypertrophic Cardiomyopathy</title><source>Freely Accessible Journals</source><creator>Ashrafian, Houman ; McKenna, William J ; Watkins, Hugh</creator><contributor>Robbins, Jeffery</contributor><creatorcontrib>Ashrafian, Houman ; McKenna, William J ; Watkins, Hugh ; Robbins, Jeffery</creatorcontrib><description>As described in earlier reviews in this series on the molecular basis of hypertrophic cardiomyopathy (HCM), HCM is one of the archetypal monogenic cardiovascular disorders to be understood at the molecular level. Twenty years after the discovery of the first HCM disease gene, genetic studies still confirm that HCM is principally a disease of the sarcomere. At the biophysical level, myofilament mutations generally enhance Ca sensitivity, maximal force production, and ATPase activity. These defects ultimately appear to converge on energy deficiency and altered Ca handling as major common paths leading to the anatomic (hypertrophy, myofiber disarray, and fibrosis) and functional features (pathological signaling and diastolic dysfunction) characteristic of HCM. In this review, we provide an account of the consequences of HCM mutations and describe how specifically targeting these molecular features has already yielded early promise for novel therapies for HCM. Although substantial efforts are still required to understand the molecular link between HCM mutations and their clinical consequences, HCM endures as an exemplar of how novel insights derived from molecular characterization of Mendelian disorders can inform the understanding of biological processes and translate into rational therapies.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.111.242974</identifier><identifier>PMID: 21700950</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: American Heart Association, Inc</publisher><subject>Actin Cytoskeleton - physiology ; Animals ; Biological and medical sciences ; Calcium - metabolism ; Cardiology. Vascular system ; Cardiomyopathy, Hypertrophic - drug therapy ; Cardiomyopathy, Hypertrophic - etiology ; Cardiomyopathy, Hypertrophic - genetics ; Energy Metabolism ; Fundamental and applied biological sciences. Psychology ; Heart ; Humans ; Medical sciences ; Mutation ; Myocarditis. Cardiomyopathies ; Myocardium - metabolism ; Signal Transduction ; Vertebrates: cardiovascular system</subject><ispartof>Circulation research, 2011-06, Vol.109 (1), p.86-96</ispartof><rights>2011 American Heart Association, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3</citedby><cites>FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24332328$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21700950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Robbins, Jeffery</contributor><creatorcontrib>Ashrafian, Houman</creatorcontrib><creatorcontrib>McKenna, William J</creatorcontrib><creatorcontrib>Watkins, Hugh</creatorcontrib><title>Disease Pathways and Novel Therapeutic Targets in Hypertrophic Cardiomyopathy</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>As described in earlier reviews in this series on the molecular basis of hypertrophic cardiomyopathy (HCM), HCM is one of the archetypal monogenic cardiovascular disorders to be understood at the molecular level. Twenty years after the discovery of the first HCM disease gene, genetic studies still confirm that HCM is principally a disease of the sarcomere. At the biophysical level, myofilament mutations generally enhance Ca sensitivity, maximal force production, and ATPase activity. These defects ultimately appear to converge on energy deficiency and altered Ca handling as major common paths leading to the anatomic (hypertrophy, myofiber disarray, and fibrosis) and functional features (pathological signaling and diastolic dysfunction) characteristic of HCM. In this review, we provide an account of the consequences of HCM mutations and describe how specifically targeting these molecular features has already yielded early promise for novel therapies for HCM. Although substantial efforts are still required to understand the molecular link between HCM mutations and their clinical consequences, HCM endures as an exemplar of how novel insights derived from molecular characterization of Mendelian disorders can inform the understanding of biological processes and translate into rational therapies.</description><subject>Actin Cytoskeleton - physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium - metabolism</subject><subject>Cardiology. Vascular system</subject><subject>Cardiomyopathy, Hypertrophic - drug therapy</subject><subject>Cardiomyopathy, Hypertrophic - etiology</subject><subject>Cardiomyopathy, Hypertrophic - genetics</subject><subject>Energy Metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Heart</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Mutation</subject><subject>Myocarditis. Cardiomyopathies</subject><subject>Myocardium - metabolism</subject><subject>Signal Transduction</subject><subject>Vertebrates: cardiovascular system</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFkUtPwzAQhC0EouXxE0C5IE4pXtuJk2MVCq3ES6WcLSfdkEDaBDuhyr_HVQucrBl_49WOCbkAOgII4SaZzZP55HU8HTsNIyZYLMUBGULAhC8CCYdkSCmNfck5HZATaz8oBcFZfEwGDKS7CuiQPN6WFrVF70W3xUb31tPrpfdUf2PlLQo0usGuLTNvoc07ttYr1960b9C0pm4K5yfaLMt61deNy_dn5CjXlcXz_XlK3u4mi2TqPzzfz5Lxg58FIgIfOEQcWBAJyIGmUR4Gccoky2WkIYqBhlkWAE_F1gXBBAiMY5bmKY_TpdD8lFzv3m1M_dWhbdWqtBlWlV5j3VkVSS5pyGToyGBHZqa21mCuGlOutOkVULUtUv0X6TSoXZEud7mf0KUrXP6lfptzwNUe0DbTVW70OivtPyc4Z5xFjhM7blNXLRr7WXUbNKpAXbWFcj9EOQXmMwpubSao7xwA_gPIPIpr</recordid><startdate>20110624</startdate><enddate>20110624</enddate><creator>Ashrafian, Houman</creator><creator>McKenna, William J</creator><creator>Watkins, Hugh</creator><general>American Heart Association, Inc</general><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110624</creationdate><title>Disease Pathways and Novel Therapeutic Targets in Hypertrophic Cardiomyopathy</title><author>Ashrafian, Houman ; McKenna, William J ; Watkins, Hugh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Actin Cytoskeleton - physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium - metabolism</topic><topic>Cardiology. Vascular system</topic><topic>Cardiomyopathy, Hypertrophic - drug therapy</topic><topic>Cardiomyopathy, Hypertrophic - etiology</topic><topic>Cardiomyopathy, Hypertrophic - genetics</topic><topic>Energy Metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Heart</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Mutation</topic><topic>Myocarditis. Cardiomyopathies</topic><topic>Myocardium - metabolism</topic><topic>Signal Transduction</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashrafian, Houman</creatorcontrib><creatorcontrib>McKenna, William J</creatorcontrib><creatorcontrib>Watkins, Hugh</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashrafian, Houman</au><au>McKenna, William J</au><au>Watkins, Hugh</au><au>Robbins, Jeffery</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disease Pathways and Novel Therapeutic Targets in Hypertrophic Cardiomyopathy</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2011-06-24</date><risdate>2011</risdate><volume>109</volume><issue>1</issue><spage>86</spage><epage>96</epage><pages>86-96</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>As described in earlier reviews in this series on the molecular basis of hypertrophic cardiomyopathy (HCM), HCM is one of the archetypal monogenic cardiovascular disorders to be understood at the molecular level. Twenty years after the discovery of the first HCM disease gene, genetic studies still confirm that HCM is principally a disease of the sarcomere. At the biophysical level, myofilament mutations generally enhance Ca sensitivity, maximal force production, and ATPase activity. These defects ultimately appear to converge on energy deficiency and altered Ca handling as major common paths leading to the anatomic (hypertrophy, myofiber disarray, and fibrosis) and functional features (pathological signaling and diastolic dysfunction) characteristic of HCM. In this review, we provide an account of the consequences of HCM mutations and describe how specifically targeting these molecular features has already yielded early promise for novel therapies for HCM. Although substantial efforts are still required to understand the molecular link between HCM mutations and their clinical consequences, HCM endures as an exemplar of how novel insights derived from molecular characterization of Mendelian disorders can inform the understanding of biological processes and translate into rational therapies.</abstract><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>21700950</pmid><doi>10.1161/CIRCRESAHA.111.242974</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2011-06, Vol.109 (1), p.86-96
issn 0009-7330
1524-4571
language eng
recordid cdi_proquest_miscellaneous_873706276
source Freely Accessible Journals
subjects Actin Cytoskeleton - physiology
Animals
Biological and medical sciences
Calcium - metabolism
Cardiology. Vascular system
Cardiomyopathy, Hypertrophic - drug therapy
Cardiomyopathy, Hypertrophic - etiology
Cardiomyopathy, Hypertrophic - genetics
Energy Metabolism
Fundamental and applied biological sciences. Psychology
Heart
Humans
Medical sciences
Mutation
Myocarditis. Cardiomyopathies
Myocardium - metabolism
Signal Transduction
Vertebrates: cardiovascular system
title Disease Pathways and Novel Therapeutic Targets in Hypertrophic Cardiomyopathy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disease%20Pathways%20and%20Novel%20Therapeutic%20Targets%20in%20Hypertrophic%20Cardiomyopathy&rft.jtitle=Circulation%20research&rft.au=Ashrafian,%20Houman&rft.date=2011-06-24&rft.volume=109&rft.issue=1&rft.spage=86&rft.epage=96&rft.pages=86-96&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/CIRCRESAHA.111.242974&rft_dat=%3Cproquest_cross%3E873706276%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5481-13183125841f10b8f659b272f78a189106cc513b49b27142414e992bfb39bd4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=873706276&rft_id=info:pmid/21700950&rfr_iscdi=true