Loading…
Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen
► Nitrogen stripping combined with Amberlyst 70 allows high furfural yield. ► Product selectivity in the condensate stream is almost 100%. ► Less cooling energy requirements than using steam and easy recyclability of nitrogen. ► Water–furfural phase separation occurs at high initial xylose loadings....
Saved in:
Published in: | Bioresource technology 2011-08, Vol.102 (16), p.7478-7485 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3 |
container_end_page | 7485 |
container_issue | 16 |
container_start_page | 7478 |
container_title | Bioresource technology |
container_volume | 102 |
creator | Agirrezabal-Telleria, I. Larreategui, A. Requies, J. Güemez, M.B. Arias, P.L. |
description | ► Nitrogen stripping combined with Amberlyst 70 allows high furfural yield. ► Product selectivity in the condensate stream is almost 100%. ► Less cooling energy requirements than using steam and easy recyclability of nitrogen. ► Water–furfural phase separation occurs at high initial xylose loadings. ► Modeling results are valuable for further continuous process designs.
The aim of this work deals with the development of new approaches to the production of furfural from xylose. It combines relatively cheap heterogeneous catalysts (Amberlyst 70) with simultaneous furfural stripping using nitrogen under semi-batch conditions. Nitrogen, compared to steam, does not dilute the vapor phase stream when condensed. This system allowed stripping 65% of the furfural converted from xylose and almost 100% of selectivity in the condensate. Moreover, high initial xylose loadings led to the formation of two water–furfural phases, which could reduce further purification costs. Constant liquid–vapor equilibrium along stripping could be maintained for different xylose loadings. The modeling of the experimental data was carried out in order to obtain a liquid–vapor mass-transfer coefficient. This value could be used for future studies under steady-state continuous conditions in similar reaction-systems. |
doi_str_mv | 10.1016/j.biortech.2011.05.015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_874191882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852411006547</els_id><sourcerecordid>874191882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3</originalsourceid><addsrcrecordid>eNqFkE1vEzEQhi0EomnhL1S-IOCwy9jezxtVRQtSJS5wthx7nDjatYPtpc2_x1FSOHKawzzvfDyEXDOoGbDu065euxAz6m3NgbEa2hpY-4Ks2NCLio9995KsYOygGlreXJDLlHYAIFjPX5MLzjreDAJW5PFuiXaJaqL7GMyiswue2hhm-nSYQkK6JOc3NC2TDd5pWtoVPumt8hukEUsz0Q838xrjdEj5I1Xe0OTmZcrKY1gSTTm6_f4449HlLfUux7BB_4a8smpK-PZcr8jPuy8_br9WD9_vv93ePFRajH2u-l63I8dWtcgM2I53A2LDtLViHLCHoRWWjQwQVVMSYBhvrDFaCDG2YIy4Iu9Pc8t7vxZMWc4uaZym03ly6JuSHwZeyO5E6hhSimjlPrpZxYNkII_O5U4-O5dH5xJaWZyX4PV5xbKe0fyNPUsuwLszoJJWk43Ka5f-cY1gwJuucJ9PHBYhvx1GmbRDr9G4iDpLE9z_bvkDvJOmEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874191882</pqid></control><display><type>article</type><title>Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen</title><source>ScienceDirect Journals</source><creator>Agirrezabal-Telleria, I. ; Larreategui, A. ; Requies, J. ; Güemez, M.B. ; Arias, P.L.</creator><creatorcontrib>Agirrezabal-Telleria, I. ; Larreategui, A. ; Requies, J. ; Güemez, M.B. ; Arias, P.L.</creatorcontrib><description>► Nitrogen stripping combined with Amberlyst 70 allows high furfural yield. ► Product selectivity in the condensate stream is almost 100%. ► Less cooling energy requirements than using steam and easy recyclability of nitrogen. ► Water–furfural phase separation occurs at high initial xylose loadings. ► Modeling results are valuable for further continuous process designs.
The aim of this work deals with the development of new approaches to the production of furfural from xylose. It combines relatively cheap heterogeneous catalysts (Amberlyst 70) with simultaneous furfural stripping using nitrogen under semi-batch conditions. Nitrogen, compared to steam, does not dilute the vapor phase stream when condensed. This system allowed stripping 65% of the furfural converted from xylose and almost 100% of selectivity in the condensate. Moreover, high initial xylose loadings led to the formation of two water–furfural phases, which could reduce further purification costs. Constant liquid–vapor equilibrium along stripping could be maintained for different xylose loadings. The modeling of the experimental data was carried out in order to obtain a liquid–vapor mass-transfer coefficient. This value could be used for future studies under steady-state continuous conditions in similar reaction-systems.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2011.05.015</identifier><identifier>PMID: 21624830</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Amberlyst ; Biological and medical sciences ; Catalysis ; Fundamental and applied biological sciences. Psychology ; Furaldehyde - chemical synthesis ; Furfural ; Kinetics ; Models, Chemical ; Nitrogen - chemistry ; Phase Transition ; Process optimization ; Stripping ; Xylose - chemistry ; Xylose dehydration</subject><ispartof>Bioresource technology, 2011-08, Vol.102 (16), p.7478-7485</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3</citedby><cites>FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24310246$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21624830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agirrezabal-Telleria, I.</creatorcontrib><creatorcontrib>Larreategui, A.</creatorcontrib><creatorcontrib>Requies, J.</creatorcontrib><creatorcontrib>Güemez, M.B.</creatorcontrib><creatorcontrib>Arias, P.L.</creatorcontrib><title>Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>► Nitrogen stripping combined with Amberlyst 70 allows high furfural yield. ► Product selectivity in the condensate stream is almost 100%. ► Less cooling energy requirements than using steam and easy recyclability of nitrogen. ► Water–furfural phase separation occurs at high initial xylose loadings. ► Modeling results are valuable for further continuous process designs.
The aim of this work deals with the development of new approaches to the production of furfural from xylose. It combines relatively cheap heterogeneous catalysts (Amberlyst 70) with simultaneous furfural stripping using nitrogen under semi-batch conditions. Nitrogen, compared to steam, does not dilute the vapor phase stream when condensed. This system allowed stripping 65% of the furfural converted from xylose and almost 100% of selectivity in the condensate. Moreover, high initial xylose loadings led to the formation of two water–furfural phases, which could reduce further purification costs. Constant liquid–vapor equilibrium along stripping could be maintained for different xylose loadings. The modeling of the experimental data was carried out in order to obtain a liquid–vapor mass-transfer coefficient. This value could be used for future studies under steady-state continuous conditions in similar reaction-systems.</description><subject>Amberlyst</subject><subject>Biological and medical sciences</subject><subject>Catalysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Furaldehyde - chemical synthesis</subject><subject>Furfural</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Nitrogen - chemistry</subject><subject>Phase Transition</subject><subject>Process optimization</subject><subject>Stripping</subject><subject>Xylose - chemistry</subject><subject>Xylose dehydration</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1vEzEQhi0EomnhL1S-IOCwy9jezxtVRQtSJS5wthx7nDjatYPtpc2_x1FSOHKawzzvfDyEXDOoGbDu065euxAz6m3NgbEa2hpY-4Ks2NCLio9995KsYOygGlreXJDLlHYAIFjPX5MLzjreDAJW5PFuiXaJaqL7GMyiswue2hhm-nSYQkK6JOc3NC2TDd5pWtoVPumt8hukEUsz0Q838xrjdEj5I1Xe0OTmZcrKY1gSTTm6_f4449HlLfUux7BB_4a8smpK-PZcr8jPuy8_br9WD9_vv93ePFRajH2u-l63I8dWtcgM2I53A2LDtLViHLCHoRWWjQwQVVMSYBhvrDFaCDG2YIy4Iu9Pc8t7vxZMWc4uaZym03ly6JuSHwZeyO5E6hhSimjlPrpZxYNkII_O5U4-O5dH5xJaWZyX4PV5xbKe0fyNPUsuwLszoJJWk43Ka5f-cY1gwJuucJ9PHBYhvx1GmbRDr9G4iDpLE9z_bvkDvJOmEA</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Agirrezabal-Telleria, I.</creator><creator>Larreategui, A.</creator><creator>Requies, J.</creator><creator>Güemez, M.B.</creator><creator>Arias, P.L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110801</creationdate><title>Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen</title><author>Agirrezabal-Telleria, I. ; Larreategui, A. ; Requies, J. ; Güemez, M.B. ; Arias, P.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amberlyst</topic><topic>Biological and medical sciences</topic><topic>Catalysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Furaldehyde - chemical synthesis</topic><topic>Furfural</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Nitrogen - chemistry</topic><topic>Phase Transition</topic><topic>Process optimization</topic><topic>Stripping</topic><topic>Xylose - chemistry</topic><topic>Xylose dehydration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agirrezabal-Telleria, I.</creatorcontrib><creatorcontrib>Larreategui, A.</creatorcontrib><creatorcontrib>Requies, J.</creatorcontrib><creatorcontrib>Güemez, M.B.</creatorcontrib><creatorcontrib>Arias, P.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agirrezabal-Telleria, I.</au><au>Larreategui, A.</au><au>Requies, J.</au><au>Güemez, M.B.</au><au>Arias, P.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>102</volume><issue>16</issue><spage>7478</spage><epage>7485</epage><pages>7478-7485</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>► Nitrogen stripping combined with Amberlyst 70 allows high furfural yield. ► Product selectivity in the condensate stream is almost 100%. ► Less cooling energy requirements than using steam and easy recyclability of nitrogen. ► Water–furfural phase separation occurs at high initial xylose loadings. ► Modeling results are valuable for further continuous process designs.
The aim of this work deals with the development of new approaches to the production of furfural from xylose. It combines relatively cheap heterogeneous catalysts (Amberlyst 70) with simultaneous furfural stripping using nitrogen under semi-batch conditions. Nitrogen, compared to steam, does not dilute the vapor phase stream when condensed. This system allowed stripping 65% of the furfural converted from xylose and almost 100% of selectivity in the condensate. Moreover, high initial xylose loadings led to the formation of two water–furfural phases, which could reduce further purification costs. Constant liquid–vapor equilibrium along stripping could be maintained for different xylose loadings. The modeling of the experimental data was carried out in order to obtain a liquid–vapor mass-transfer coefficient. This value could be used for future studies under steady-state continuous conditions in similar reaction-systems.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21624830</pmid><doi>10.1016/j.biortech.2011.05.015</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2011-08, Vol.102 (16), p.7478-7485 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_874191882 |
source | ScienceDirect Journals |
subjects | Amberlyst Biological and medical sciences Catalysis Fundamental and applied biological sciences. Psychology Furaldehyde - chemical synthesis Furfural Kinetics Models, Chemical Nitrogen - chemistry Phase Transition Process optimization Stripping Xylose - chemistry Xylose dehydration |
title | Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Furfural%20production%20from%20xylose%20using%20sulfonic%20ion-exchange%20resins%20(Amberlyst)%20and%20simultaneous%20stripping%20with%20nitrogen&rft.jtitle=Bioresource%20technology&rft.au=Agirrezabal-Telleria,%20I.&rft.date=2011-08-01&rft.volume=102&rft.issue=16&rft.spage=7478&rft.epage=7485&rft.pages=7478-7485&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2011.05.015&rft_dat=%3Cproquest_cross%3E874191882%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=874191882&rft_id=info:pmid/21624830&rfr_iscdi=true |