Loading…

Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen

► Nitrogen stripping combined with Amberlyst 70 allows high furfural yield. ► Product selectivity in the condensate stream is almost 100%. ► Less cooling energy requirements than using steam and easy recyclability of nitrogen. ► Water–furfural phase separation occurs at high initial xylose loadings....

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2011-08, Vol.102 (16), p.7478-7485
Main Authors: Agirrezabal-Telleria, I., Larreategui, A., Requies, J., Güemez, M.B., Arias, P.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3
cites cdi_FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3
container_end_page 7485
container_issue 16
container_start_page 7478
container_title Bioresource technology
container_volume 102
creator Agirrezabal-Telleria, I.
Larreategui, A.
Requies, J.
Güemez, M.B.
Arias, P.L.
description ► Nitrogen stripping combined with Amberlyst 70 allows high furfural yield. ► Product selectivity in the condensate stream is almost 100%. ► Less cooling energy requirements than using steam and easy recyclability of nitrogen. ► Water–furfural phase separation occurs at high initial xylose loadings. ► Modeling results are valuable for further continuous process designs. The aim of this work deals with the development of new approaches to the production of furfural from xylose. It combines relatively cheap heterogeneous catalysts (Amberlyst 70) with simultaneous furfural stripping using nitrogen under semi-batch conditions. Nitrogen, compared to steam, does not dilute the vapor phase stream when condensed. This system allowed stripping 65% of the furfural converted from xylose and almost 100% of selectivity in the condensate. Moreover, high initial xylose loadings led to the formation of two water–furfural phases, which could reduce further purification costs. Constant liquid–vapor equilibrium along stripping could be maintained for different xylose loadings. The modeling of the experimental data was carried out in order to obtain a liquid–vapor mass-transfer coefficient. This value could be used for future studies under steady-state continuous conditions in similar reaction-systems.
doi_str_mv 10.1016/j.biortech.2011.05.015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_874191882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852411006547</els_id><sourcerecordid>874191882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3</originalsourceid><addsrcrecordid>eNqFkE1vEzEQhi0EomnhL1S-IOCwy9jezxtVRQtSJS5wthx7nDjatYPtpc2_x1FSOHKawzzvfDyEXDOoGbDu065euxAz6m3NgbEa2hpY-4Ks2NCLio9995KsYOygGlreXJDLlHYAIFjPX5MLzjreDAJW5PFuiXaJaqL7GMyiswue2hhm-nSYQkK6JOc3NC2TDd5pWtoVPumt8hukEUsz0Q838xrjdEj5I1Xe0OTmZcrKY1gSTTm6_f4449HlLfUux7BB_4a8smpK-PZcr8jPuy8_br9WD9_vv93ePFRajH2u-l63I8dWtcgM2I53A2LDtLViHLCHoRWWjQwQVVMSYBhvrDFaCDG2YIy4Iu9Pc8t7vxZMWc4uaZym03ly6JuSHwZeyO5E6hhSimjlPrpZxYNkII_O5U4-O5dH5xJaWZyX4PV5xbKe0fyNPUsuwLszoJJWk43Ka5f-cY1gwJuucJ9PHBYhvx1GmbRDr9G4iDpLE9z_bvkDvJOmEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874191882</pqid></control><display><type>article</type><title>Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen</title><source>ScienceDirect Journals</source><creator>Agirrezabal-Telleria, I. ; Larreategui, A. ; Requies, J. ; Güemez, M.B. ; Arias, P.L.</creator><creatorcontrib>Agirrezabal-Telleria, I. ; Larreategui, A. ; Requies, J. ; Güemez, M.B. ; Arias, P.L.</creatorcontrib><description>► Nitrogen stripping combined with Amberlyst 70 allows high furfural yield. ► Product selectivity in the condensate stream is almost 100%. ► Less cooling energy requirements than using steam and easy recyclability of nitrogen. ► Water–furfural phase separation occurs at high initial xylose loadings. ► Modeling results are valuable for further continuous process designs. The aim of this work deals with the development of new approaches to the production of furfural from xylose. It combines relatively cheap heterogeneous catalysts (Amberlyst 70) with simultaneous furfural stripping using nitrogen under semi-batch conditions. Nitrogen, compared to steam, does not dilute the vapor phase stream when condensed. This system allowed stripping 65% of the furfural converted from xylose and almost 100% of selectivity in the condensate. Moreover, high initial xylose loadings led to the formation of two water–furfural phases, which could reduce further purification costs. Constant liquid–vapor equilibrium along stripping could be maintained for different xylose loadings. The modeling of the experimental data was carried out in order to obtain a liquid–vapor mass-transfer coefficient. This value could be used for future studies under steady-state continuous conditions in similar reaction-systems.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2011.05.015</identifier><identifier>PMID: 21624830</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Amberlyst ; Biological and medical sciences ; Catalysis ; Fundamental and applied biological sciences. Psychology ; Furaldehyde - chemical synthesis ; Furfural ; Kinetics ; Models, Chemical ; Nitrogen - chemistry ; Phase Transition ; Process optimization ; Stripping ; Xylose - chemistry ; Xylose dehydration</subject><ispartof>Bioresource technology, 2011-08, Vol.102 (16), p.7478-7485</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3</citedby><cites>FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24310246$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21624830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agirrezabal-Telleria, I.</creatorcontrib><creatorcontrib>Larreategui, A.</creatorcontrib><creatorcontrib>Requies, J.</creatorcontrib><creatorcontrib>Güemez, M.B.</creatorcontrib><creatorcontrib>Arias, P.L.</creatorcontrib><title>Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>► Nitrogen stripping combined with Amberlyst 70 allows high furfural yield. ► Product selectivity in the condensate stream is almost 100%. ► Less cooling energy requirements than using steam and easy recyclability of nitrogen. ► Water–furfural phase separation occurs at high initial xylose loadings. ► Modeling results are valuable for further continuous process designs. The aim of this work deals with the development of new approaches to the production of furfural from xylose. It combines relatively cheap heterogeneous catalysts (Amberlyst 70) with simultaneous furfural stripping using nitrogen under semi-batch conditions. Nitrogen, compared to steam, does not dilute the vapor phase stream when condensed. This system allowed stripping 65% of the furfural converted from xylose and almost 100% of selectivity in the condensate. Moreover, high initial xylose loadings led to the formation of two water–furfural phases, which could reduce further purification costs. Constant liquid–vapor equilibrium along stripping could be maintained for different xylose loadings. The modeling of the experimental data was carried out in order to obtain a liquid–vapor mass-transfer coefficient. This value could be used for future studies under steady-state continuous conditions in similar reaction-systems.</description><subject>Amberlyst</subject><subject>Biological and medical sciences</subject><subject>Catalysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Furaldehyde - chemical synthesis</subject><subject>Furfural</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Nitrogen - chemistry</subject><subject>Phase Transition</subject><subject>Process optimization</subject><subject>Stripping</subject><subject>Xylose - chemistry</subject><subject>Xylose dehydration</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1vEzEQhi0EomnhL1S-IOCwy9jezxtVRQtSJS5wthx7nDjatYPtpc2_x1FSOHKawzzvfDyEXDOoGbDu065euxAz6m3NgbEa2hpY-4Ks2NCLio9995KsYOygGlreXJDLlHYAIFjPX5MLzjreDAJW5PFuiXaJaqL7GMyiswue2hhm-nSYQkK6JOc3NC2TDd5pWtoVPumt8hukEUsz0Q838xrjdEj5I1Xe0OTmZcrKY1gSTTm6_f4449HlLfUux7BB_4a8smpK-PZcr8jPuy8_br9WD9_vv93ePFRajH2u-l63I8dWtcgM2I53A2LDtLViHLCHoRWWjQwQVVMSYBhvrDFaCDG2YIy4Iu9Pc8t7vxZMWc4uaZym03ly6JuSHwZeyO5E6hhSimjlPrpZxYNkII_O5U4-O5dH5xJaWZyX4PV5xbKe0fyNPUsuwLszoJJWk43Ka5f-cY1gwJuucJ9PHBYhvx1GmbRDr9G4iDpLE9z_bvkDvJOmEA</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Agirrezabal-Telleria, I.</creator><creator>Larreategui, A.</creator><creator>Requies, J.</creator><creator>Güemez, M.B.</creator><creator>Arias, P.L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110801</creationdate><title>Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen</title><author>Agirrezabal-Telleria, I. ; Larreategui, A. ; Requies, J. ; Güemez, M.B. ; Arias, P.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amberlyst</topic><topic>Biological and medical sciences</topic><topic>Catalysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Furaldehyde - chemical synthesis</topic><topic>Furfural</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Nitrogen - chemistry</topic><topic>Phase Transition</topic><topic>Process optimization</topic><topic>Stripping</topic><topic>Xylose - chemistry</topic><topic>Xylose dehydration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agirrezabal-Telleria, I.</creatorcontrib><creatorcontrib>Larreategui, A.</creatorcontrib><creatorcontrib>Requies, J.</creatorcontrib><creatorcontrib>Güemez, M.B.</creatorcontrib><creatorcontrib>Arias, P.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agirrezabal-Telleria, I.</au><au>Larreategui, A.</au><au>Requies, J.</au><au>Güemez, M.B.</au><au>Arias, P.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>102</volume><issue>16</issue><spage>7478</spage><epage>7485</epage><pages>7478-7485</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>► Nitrogen stripping combined with Amberlyst 70 allows high furfural yield. ► Product selectivity in the condensate stream is almost 100%. ► Less cooling energy requirements than using steam and easy recyclability of nitrogen. ► Water–furfural phase separation occurs at high initial xylose loadings. ► Modeling results are valuable for further continuous process designs. The aim of this work deals with the development of new approaches to the production of furfural from xylose. It combines relatively cheap heterogeneous catalysts (Amberlyst 70) with simultaneous furfural stripping using nitrogen under semi-batch conditions. Nitrogen, compared to steam, does not dilute the vapor phase stream when condensed. This system allowed stripping 65% of the furfural converted from xylose and almost 100% of selectivity in the condensate. Moreover, high initial xylose loadings led to the formation of two water–furfural phases, which could reduce further purification costs. Constant liquid–vapor equilibrium along stripping could be maintained for different xylose loadings. The modeling of the experimental data was carried out in order to obtain a liquid–vapor mass-transfer coefficient. This value could be used for future studies under steady-state continuous conditions in similar reaction-systems.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21624830</pmid><doi>10.1016/j.biortech.2011.05.015</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2011-08, Vol.102 (16), p.7478-7485
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_874191882
source ScienceDirect Journals
subjects Amberlyst
Biological and medical sciences
Catalysis
Fundamental and applied biological sciences. Psychology
Furaldehyde - chemical synthesis
Furfural
Kinetics
Models, Chemical
Nitrogen - chemistry
Phase Transition
Process optimization
Stripping
Xylose - chemistry
Xylose dehydration
title Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Furfural%20production%20from%20xylose%20using%20sulfonic%20ion-exchange%20resins%20(Amberlyst)%20and%20simultaneous%20stripping%20with%20nitrogen&rft.jtitle=Bioresource%20technology&rft.au=Agirrezabal-Telleria,%20I.&rft.date=2011-08-01&rft.volume=102&rft.issue=16&rft.spage=7478&rft.epage=7485&rft.pages=7478-7485&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2011.05.015&rft_dat=%3Cproquest_cross%3E874191882%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-77c592e5a5e1d0f6268ee41cff398e70853f1910eea4c390d124fddc333950dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=874191882&rft_id=info:pmid/21624830&rfr_iscdi=true