Loading…

High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation

We describe the critical design parameters and present detailed experimental and theoretical studies for efficient, continuous-wave (cw), single-pass second harmonic generation (SHG) based on novel cascaded multicrystal scheme, providing >55% conversion efficiency and multiwatt output powers at 5...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2011-06, Vol.19 (12), p.11152-11169
Main Authors: Kumar, S Chaitanya, Samanta, G K, Devi, Kavita, Ebrahim-Zadeh, M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe the critical design parameters and present detailed experimental and theoretical studies for efficient, continuous-wave (cw), single-pass second harmonic generation (SHG) based on novel cascaded multicrystal scheme, providing >55% conversion efficiency and multiwatt output powers at 532 nm for a wide range of input fundamental powers at 1064 nm. Systematic characterization of the technique in single-crystal, double-crystal and multicrystal schemes has been performed and the results are compared. Optimization of vital parameters including focusing and phase-matching temperature at the output of each stage is investigated and strategies to achieve optimum SHG efficiency and power are discussed. Relevant theoretical calculations to estimate the effect of dispersion between the fundamental and the SH beam in air are also presented. The contributions of thermal effects on SHG efficiency roll-off have been studied from quasi-cw measurements. Using this multicrystal scheme, stable SH power with a peak-to-peak fluctuation better than 6.5% over more than 2 hours is achieved in high spatial beam quality with M2
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.19.011152