Loading…
Light control of silver nanoparticle's diffusion
The diffusion of silver nanoparticles in water at 298K inside an optical vortex lattice is analyzed in detail by numerical simulations. At power densities of the order of those used to trap nanoparticles with optical tweezers, the dynamic response shows three different regimes depending on the light...
Saved in:
Published in: | Optics express 2011-06, Vol.19 (12), p.11471-11478 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The diffusion of silver nanoparticles in water at 298K inside an optical vortex lattice is analyzed in detail by numerical simulations. At power densities of the order of those used to trap nanoparticles with optical tweezers, the dynamic response shows three different regimes depending on the light wavelength. In the first one particles get trapped inside the light vortices following almost closed trajectories. In the second one, around the plasmon resonance, the diffusion constant is dramatically enhanced with respect to the Brownian motion. In the third one, at longer wavelengths, nanoparticles are confined during a few seconds in quasi-one-dimensional optical traps. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.19.011471 |