Loading…

In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel

ABSTRACT The success of skeletal muscle reconstruction depends on finding the most effective, clinically suitable strategy to engineer myogenic cells and biocompatible scaffolds. Satellite cells (SCs), freshly isolated or transplanted within their niche, are presently considered the best source for...

Full description

Saved in:
Bibliographic Details
Published in:The FASEB journal 2011-07, Vol.25 (7), p.2296-2304
Main Authors: Rossi, Carlo Alberto, Flaibani, Marina, Blaauw, Bert, Pozzobon, Michela, Figallo, Elisa, Reggiani, Carlo, Vitiello, Libero, Elvassore, Nicola, De Coppi, Paolo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT The success of skeletal muscle reconstruction depends on finding the most effective, clinically suitable strategy to engineer myogenic cells and biocompatible scaffolds. Satellite cells (SCs), freshly isolated or transplanted within their niche, are presently considered the best source for muscle regeneration. Here, we designed and developed the delivery of either SCs or muscle progenitor cells (MPCs) via an in situ photo‐cross‐linkable hyaluronan‐based hydrogel, hyaluronic acid‐photoinitiator (HA‐PI) complex. Partially ablated tibialis anterior (TA) of C57BL/6J mice engrafted with freshly isolated satellite cells embedded in hydrogel showed a major improvement in muscle structure and number of new myofibers, compared to muscles receiving hydrogel + MPCs or hydrogel alone. Notably, SCs embedded in HA‐PI also promoted functional recovery, as assessed by contractile force measurements. Tissue reconstruction was associated with the formation of both neural and vascular networks and the reconstitution of a functional SC niche. This innovative approach could overcome previous limitations in skeletal muscle tissue engineering.—Rossi, C. A., Flaibani, M., Blaauw, B., Pozzobon, M., Figallo, E., Reggiani, C., Vitiello, L., Elvassore, N., De Coppi, P. In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel. FASEB J. 25, 2296‐2304 (2011). www.fasebj.org
ISSN:0892-6638
1530-6860
DOI:10.1096/fj.10-174755