Loading…

Study of (Zr,Ti)CN, (Zr,Hf)CN and (Zr,Nb)CN films prepared by reactive magnetron sputtering

(Zr,Ti)CN, (Zr,Hf)CN and (Zr,Nb)CN coatings, in which Ti, Hf and Nb were added to ZrCN base compound, have been prepared by reactive magnetron sputtering. The coatings, with two different non-metal/metal ratios, were comparatively investigated in terms of elemental and phase composition, texture, su...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2011-04, Vol.519 (12), p.4092-4096
Main Authors: Braic, M., Balaceanu, M., Vladescu, A., Zoita, C.N., Braic, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(Zr,Ti)CN, (Zr,Hf)CN and (Zr,Nb)CN coatings, in which Ti, Hf and Nb were added to ZrCN base compound, have been prepared by reactive magnetron sputtering. The coatings, with two different non-metal/metal ratios, were comparatively investigated in terms of elemental and phase composition, texture, surface morphology, hardness and friction performance. It has been shown that the films exhibit nanocomposite structures, consisting of a mixture of crystalline metal carbonitride and amorphous carbon. As compared with ternary ZrCN coatings, the quaternary coatings were found to exhibit superior mechanical and friction characteristics. In general, the films with higher non-metal content revealed finer morphologies, higher hardness and lower friction coefficient. Depending on the coating type and non-metal/metal ratio, the hardness values ranged from about 21 to 29 GPa, being higher than those of ZrCN reference films. The coefficients of friction varied from 0.2 to 0.5, the lowest values being obtained for the coatings with the highest non-metal content.
ISSN:0040-6090
1879-2731
DOI:10.1016/j.tsf.2011.01.375