Loading…

Analyzing the Video Popularity Characteristics of Large-Scale User Generated Content Systems

User generated content (UGC), now with millions of video producers and consumers, is reshaping the way people watch video and TV. In particular, UGC sites are creating new viewing patterns and social interactions, empowering users to be more creative, and generating new business opportunities. Compa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking 2009-10, Vol.17 (5), p.1357-1370
Main Authors: Meeyoung Cha, Haewoon Kwak, Rodriguez, P., Yong-Yeol Ahn, Sue Moon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-9fc0961c8420ea9717fe41ed76fb0e81acc3d0fb7b57c87d82e008150161acdb3
cites cdi_FETCH-LOGICAL-c398t-9fc0961c8420ea9717fe41ed76fb0e81acc3d0fb7b57c87d82e008150161acdb3
container_end_page 1370
container_issue 5
container_start_page 1357
container_title IEEE/ACM transactions on networking
container_volume 17
creator Meeyoung Cha
Haewoon Kwak
Rodriguez, P.
Yong-Yeol Ahn
Sue Moon
description User generated content (UGC), now with millions of video producers and consumers, is reshaping the way people watch video and TV. In particular, UGC sites are creating new viewing patterns and social interactions, empowering users to be more creative, and generating new business opportunities. Compared to traditional video-on-demand (VoD) systems, UGC services allow users to request videos from a potentially unlimited selection in an asynchronous fashion. To better understand the impact of UGC services, we have analyzed the world's largest UGC VoD system, YouTube, and a popular similar system in Korea, Daum Videos. In this paper, we first empirically show how UGC services are fundamentally different from traditional VoD services. We then analyze the intrinsic statistical properties of UGC popularity distributions and discuss opportunities to leverage the latent demand for niche videos (or the so-called "the Long Tail" potential), which is not reached today due to information filtering or other system scarcity distortions. Based on traces collected across multiple days, we study the popularity lifetime of UGC videos and the relationship between requests and video age. Finally, we measure the level of content aliasing and illegal content in the system and show the problems aliasing creates in ranking the video popularity accurately. The results presented in this paper are crucial to understanding UGC VoD systems and may have major commercial and technical implications for site administrators and content owners.
doi_str_mv 10.1109/TNET.2008.2011358
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_875018110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4801529</ieee_id><sourcerecordid>2317909091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-9fc0961c8420ea9717fe41ed76fb0e81acc3d0fb7b57c87d82e008150161acdb3</originalsourceid><addsrcrecordid>eNp90UFLwzAUB_AiCs7pBxAvwYOeOt9L2zQ9yphTGCps8ySUNH3dOrp2JtlhfnozNjx48JIE8nsP3vsHwTXCABGyh9nraDbgANIfiFEiT4IeJokMeSLEqX-DiEIhMn4eXFi7AsAIuOgFn4-tanbfdbtgbknsoy6pY-_dZtsoU7sdGy6VUdqRqa2rtWVdxSbKLCicatUQm1sybEwtGeWoZMOuddQ6Nt1ZR2t7GZxVqrF0dbz7wfxpNBs-h5O38cvwcRLqKJMuzCoNmUAtYw6kshTTimKkMhVVASRRaR2VUBVpkaRapqXk5AfFBFD4v7KI-sH9oe_GdF9bsi5f11ZT06iWuq3NZeqt9Hvy8u5fGXkInEsPb__AVbc1fle-m8A4S0AKj_CAtOmsNVTlG1OvldnlCPk-lnwfS76PJT_G4mtuDjU1Ef36WAImPIt-ABDUiOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861495086</pqid></control><display><type>article</type><title>Analyzing the Video Popularity Characteristics of Large-Scale User Generated Content Systems</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Meeyoung Cha ; Haewoon Kwak ; Rodriguez, P. ; Yong-Yeol Ahn ; Sue Moon</creator><creatorcontrib>Meeyoung Cha ; Haewoon Kwak ; Rodriguez, P. ; Yong-Yeol Ahn ; Sue Moon</creatorcontrib><description>User generated content (UGC), now with millions of video producers and consumers, is reshaping the way people watch video and TV. In particular, UGC sites are creating new viewing patterns and social interactions, empowering users to be more creative, and generating new business opportunities. Compared to traditional video-on-demand (VoD) systems, UGC services allow users to request videos from a potentially unlimited selection in an asynchronous fashion. To better understand the impact of UGC services, we have analyzed the world's largest UGC VoD system, YouTube, and a popular similar system in Korea, Daum Videos. In this paper, we first empirically show how UGC services are fundamentally different from traditional VoD services. We then analyze the intrinsic statistical properties of UGC popularity distributions and discuss opportunities to leverage the latent demand for niche videos (or the so-called "the Long Tail" potential), which is not reached today due to information filtering or other system scarcity distortions. Based on traces collected across multiple days, we study the popularity lifetime of UGC videos and the relationship between requests and video age. Finally, we measure the level of content aliasing and illegal content in the system and show the problems aliasing creates in ranking the video popularity accurately. The results presented in this paper are crucial to understanding UGC VoD systems and may have major commercial and technical implications for site administrators and content owners.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2008.2011358</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aliasing ; Business ; Clocks ; copyright protection ; Distortion ; Distortion measurement ; exponential distributions ; Filtering ; Filtration ; human factors ; Information analysis ; Information filtering ; Interactive TV ; Large-scale systems ; log normal distributions ; pareto distributions ; probability ; Probability distribution ; Television ; User generated content ; Video on demand ; Watches ; YouTube</subject><ispartof>IEEE/ACM transactions on networking, 2009-10, Vol.17 (5), p.1357-1370</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-9fc0961c8420ea9717fe41ed76fb0e81acc3d0fb7b57c87d82e008150161acdb3</citedby><cites>FETCH-LOGICAL-c398t-9fc0961c8420ea9717fe41ed76fb0e81acc3d0fb7b57c87d82e008150161acdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4801529$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Meeyoung Cha</creatorcontrib><creatorcontrib>Haewoon Kwak</creatorcontrib><creatorcontrib>Rodriguez, P.</creatorcontrib><creatorcontrib>Yong-Yeol Ahn</creatorcontrib><creatorcontrib>Sue Moon</creatorcontrib><title>Analyzing the Video Popularity Characteristics of Large-Scale User Generated Content Systems</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>User generated content (UGC), now with millions of video producers and consumers, is reshaping the way people watch video and TV. In particular, UGC sites are creating new viewing patterns and social interactions, empowering users to be more creative, and generating new business opportunities. Compared to traditional video-on-demand (VoD) systems, UGC services allow users to request videos from a potentially unlimited selection in an asynchronous fashion. To better understand the impact of UGC services, we have analyzed the world's largest UGC VoD system, YouTube, and a popular similar system in Korea, Daum Videos. In this paper, we first empirically show how UGC services are fundamentally different from traditional VoD services. We then analyze the intrinsic statistical properties of UGC popularity distributions and discuss opportunities to leverage the latent demand for niche videos (or the so-called "the Long Tail" potential), which is not reached today due to information filtering or other system scarcity distortions. Based on traces collected across multiple days, we study the popularity lifetime of UGC videos and the relationship between requests and video age. Finally, we measure the level of content aliasing and illegal content in the system and show the problems aliasing creates in ranking the video popularity accurately. The results presented in this paper are crucial to understanding UGC VoD systems and may have major commercial and technical implications for site administrators and content owners.</description><subject>Aliasing</subject><subject>Business</subject><subject>Clocks</subject><subject>copyright protection</subject><subject>Distortion</subject><subject>Distortion measurement</subject><subject>exponential distributions</subject><subject>Filtering</subject><subject>Filtration</subject><subject>human factors</subject><subject>Information analysis</subject><subject>Information filtering</subject><subject>Interactive TV</subject><subject>Large-scale systems</subject><subject>log normal distributions</subject><subject>pareto distributions</subject><subject>probability</subject><subject>Probability distribution</subject><subject>Television</subject><subject>User generated content</subject><subject>Video on demand</subject><subject>Watches</subject><subject>YouTube</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90UFLwzAUB_AiCs7pBxAvwYOeOt9L2zQ9yphTGCps8ySUNH3dOrp2JtlhfnozNjx48JIE8nsP3vsHwTXCABGyh9nraDbgANIfiFEiT4IeJokMeSLEqX-DiEIhMn4eXFi7AsAIuOgFn4-tanbfdbtgbknsoy6pY-_dZtsoU7sdGy6VUdqRqa2rtWVdxSbKLCicatUQm1sybEwtGeWoZMOuddQ6Nt1ZR2t7GZxVqrF0dbz7wfxpNBs-h5O38cvwcRLqKJMuzCoNmUAtYw6kshTTimKkMhVVASRRaR2VUBVpkaRapqXk5AfFBFD4v7KI-sH9oe_GdF9bsi5f11ZT06iWuq3NZeqt9Hvy8u5fGXkInEsPb__AVbc1fle-m8A4S0AKj_CAtOmsNVTlG1OvldnlCPk-lnwfS76PJT_G4mtuDjU1Ef36WAImPIt-ABDUiOU</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Meeyoung Cha</creator><creator>Haewoon Kwak</creator><creator>Rodriguez, P.</creator><creator>Yong-Yeol Ahn</creator><creator>Sue Moon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20091001</creationdate><title>Analyzing the Video Popularity Characteristics of Large-Scale User Generated Content Systems</title><author>Meeyoung Cha ; Haewoon Kwak ; Rodriguez, P. ; Yong-Yeol Ahn ; Sue Moon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-9fc0961c8420ea9717fe41ed76fb0e81acc3d0fb7b57c87d82e008150161acdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aliasing</topic><topic>Business</topic><topic>Clocks</topic><topic>copyright protection</topic><topic>Distortion</topic><topic>Distortion measurement</topic><topic>exponential distributions</topic><topic>Filtering</topic><topic>Filtration</topic><topic>human factors</topic><topic>Information analysis</topic><topic>Information filtering</topic><topic>Interactive TV</topic><topic>Large-scale systems</topic><topic>log normal distributions</topic><topic>pareto distributions</topic><topic>probability</topic><topic>Probability distribution</topic><topic>Television</topic><topic>User generated content</topic><topic>Video on demand</topic><topic>Watches</topic><topic>YouTube</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meeyoung Cha</creatorcontrib><creatorcontrib>Haewoon Kwak</creatorcontrib><creatorcontrib>Rodriguez, P.</creatorcontrib><creatorcontrib>Yong-Yeol Ahn</creatorcontrib><creatorcontrib>Sue Moon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meeyoung Cha</au><au>Haewoon Kwak</au><au>Rodriguez, P.</au><au>Yong-Yeol Ahn</au><au>Sue Moon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the Video Popularity Characteristics of Large-Scale User Generated Content Systems</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>17</volume><issue>5</issue><spage>1357</spage><epage>1370</epage><pages>1357-1370</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>User generated content (UGC), now with millions of video producers and consumers, is reshaping the way people watch video and TV. In particular, UGC sites are creating new viewing patterns and social interactions, empowering users to be more creative, and generating new business opportunities. Compared to traditional video-on-demand (VoD) systems, UGC services allow users to request videos from a potentially unlimited selection in an asynchronous fashion. To better understand the impact of UGC services, we have analyzed the world's largest UGC VoD system, YouTube, and a popular similar system in Korea, Daum Videos. In this paper, we first empirically show how UGC services are fundamentally different from traditional VoD services. We then analyze the intrinsic statistical properties of UGC popularity distributions and discuss opportunities to leverage the latent demand for niche videos (or the so-called "the Long Tail" potential), which is not reached today due to information filtering or other system scarcity distortions. Based on traces collected across multiple days, we study the popularity lifetime of UGC videos and the relationship between requests and video age. Finally, we measure the level of content aliasing and illegal content in the system and show the problems aliasing creates in ranking the video popularity accurately. The results presented in this paper are crucial to understanding UGC VoD systems and may have major commercial and technical implications for site administrators and content owners.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2008.2011358</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2009-10, Vol.17 (5), p.1357-1370
issn 1063-6692
1558-2566
language eng
recordid cdi_proquest_miscellaneous_875018110
source IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Aliasing
Business
Clocks
copyright protection
Distortion
Distortion measurement
exponential distributions
Filtering
Filtration
human factors
Information analysis
Information filtering
Interactive TV
Large-scale systems
log normal distributions
pareto distributions
probability
Probability distribution
Television
User generated content
Video on demand
Watches
YouTube
title Analyzing the Video Popularity Characteristics of Large-Scale User Generated Content Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20Video%20Popularity%20Characteristics%20of%20Large-Scale%20User%20Generated%20Content%20Systems&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Meeyoung%20Cha&rft.date=2009-10-01&rft.volume=17&rft.issue=5&rft.spage=1357&rft.epage=1370&rft.pages=1357-1370&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2008.2011358&rft_dat=%3Cproquest_ieee_%3E2317909091%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-9fc0961c8420ea9717fe41ed76fb0e81acc3d0fb7b57c87d82e008150161acdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861495086&rft_id=info:pmid/&rft_ieee_id=4801529&rfr_iscdi=true