Loading…
Active Learning Methods for Remote Sensing Image Classification
In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its im...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2009-07, Vol.47 (7), p.2218-2232 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3 |
container_end_page | 2232 |
container_issue | 7 |
container_start_page | 2218 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 47 |
creator | Tuia, D. Ratle, F. Pacifici, F. Kanevski, M.F. Emery, W.J. |
description | In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed. |
doi_str_mv | 10.1109/TGRS.2008.2010404 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_875024239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4812037</ieee_id><sourcerecordid>36325385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gHgJgnqKzn5MsjlJKVqFiuDHedlsJ7qSJrqbCv57E1p68OBl5jDPvPPOy9gxh0vOobh6mT09XwoA3RcOCtQOG3FEnUKm1C4bAS-yVOhC7LODGD8AuEKej9j1xHX-m5I52dD45i15oO69XcSkakPyRMu2o-SZmjiM7pf2jZJpbWP0lXe2821zyPYqW0c62vQxe729eZnepfPH2f10Mk9df6dLMVdOlVmFLndImmNRIKEUrgSlFVIpSl6V4ATykgrHde-3KBclKodayUqO2cVa9zO0XyuKnVn66KiubUPtKhqdIwglZNGT5_-SMpMCpcYePP0DfrSr0PRfGN37zSSIQY2vIRfaGANV5jP4pQ0_hoMZkjdD8mZI3myS73fONsI2OltXwTbOx-2i4FoiZIOBkzXniWg7VpoLkLn8BU54igY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857463029</pqid></control><display><type>article</type><title>Active Learning Methods for Remote Sensing Image Classification</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tuia, D. ; Ratle, F. ; Pacifici, F. ; Kanevski, M.F. ; Emery, W.J.</creator><creatorcontrib>Tuia, D. ; Ratle, F. ; Pacifici, F. ; Kanevski, M.F. ; Emery, W.J.</creatorcontrib><description>In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2008.2010404</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Active learning ; Algorithms ; Applied geophysics ; Construction ; Earth sciences ; Earth, ocean, space ; entropy ; Exact sciences and technology ; hyperspectral imagery ; Hyperspectral imaging ; Hyperspectral sensors ; Image classification ; image information mining ; Image resolution ; Image sampling ; Internal geophysics ; Learning ; Learning systems ; margin sampling (MS) ; Mathematical models ; Methods ; Pixels ; query learning ; Remote sensing ; Spatial resolution ; Studies ; Support vector machine classification ; Support vector machines ; support vector machines (SVMs) ; Training ; very high resolution (VHR) imagery</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2009-07, Vol.47 (7), p.2218-2232</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3</citedby><cites>FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4812037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,54787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21835065$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tuia, D.</creatorcontrib><creatorcontrib>Ratle, F.</creatorcontrib><creatorcontrib>Pacifici, F.</creatorcontrib><creatorcontrib>Kanevski, M.F.</creatorcontrib><creatorcontrib>Emery, W.J.</creatorcontrib><title>Active Learning Methods for Remote Sensing Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.</description><subject>Active learning</subject><subject>Algorithms</subject><subject>Applied geophysics</subject><subject>Construction</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>entropy</subject><subject>Exact sciences and technology</subject><subject>hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Image classification</subject><subject>image information mining</subject><subject>Image resolution</subject><subject>Image sampling</subject><subject>Internal geophysics</subject><subject>Learning</subject><subject>Learning systems</subject><subject>margin sampling (MS)</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Pixels</subject><subject>query learning</subject><subject>Remote sensing</subject><subject>Spatial resolution</subject><subject>Studies</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>support vector machines (SVMs)</subject><subject>Training</subject><subject>very high resolution (VHR) imagery</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gHgJgnqKzn5MsjlJKVqFiuDHedlsJ7qSJrqbCv57E1p68OBl5jDPvPPOy9gxh0vOobh6mT09XwoA3RcOCtQOG3FEnUKm1C4bAS-yVOhC7LODGD8AuEKej9j1xHX-m5I52dD45i15oO69XcSkakPyRMu2o-SZmjiM7pf2jZJpbWP0lXe2821zyPYqW0c62vQxe729eZnepfPH2f10Mk9df6dLMVdOlVmFLndImmNRIKEUrgSlFVIpSl6V4ATykgrHde-3KBclKodayUqO2cVa9zO0XyuKnVn66KiubUPtKhqdIwglZNGT5_-SMpMCpcYePP0DfrSr0PRfGN37zSSIQY2vIRfaGANV5jP4pQ0_hoMZkjdD8mZI3myS73fONsI2OltXwTbOx-2i4FoiZIOBkzXniWg7VpoLkLn8BU54igY</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Tuia, D.</creator><creator>Ratle, F.</creator><creator>Pacifici, F.</creator><creator>Kanevski, M.F.</creator><creator>Emery, W.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20090701</creationdate><title>Active Learning Methods for Remote Sensing Image Classification</title><author>Tuia, D. ; Ratle, F. ; Pacifici, F. ; Kanevski, M.F. ; Emery, W.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Active learning</topic><topic>Algorithms</topic><topic>Applied geophysics</topic><topic>Construction</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>entropy</topic><topic>Exact sciences and technology</topic><topic>hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Image classification</topic><topic>image information mining</topic><topic>Image resolution</topic><topic>Image sampling</topic><topic>Internal geophysics</topic><topic>Learning</topic><topic>Learning systems</topic><topic>margin sampling (MS)</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Pixels</topic><topic>query learning</topic><topic>Remote sensing</topic><topic>Spatial resolution</topic><topic>Studies</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>support vector machines (SVMs)</topic><topic>Training</topic><topic>very high resolution (VHR) imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuia, D.</creatorcontrib><creatorcontrib>Ratle, F.</creatorcontrib><creatorcontrib>Pacifici, F.</creatorcontrib><creatorcontrib>Kanevski, M.F.</creatorcontrib><creatorcontrib>Emery, W.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuia, D.</au><au>Ratle, F.</au><au>Pacifici, F.</au><au>Kanevski, M.F.</au><au>Emery, W.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Learning Methods for Remote Sensing Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>47</volume><issue>7</issue><spage>2218</spage><epage>2232</epage><pages>2218-2232</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2008.2010404</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2009-07, Vol.47 (7), p.2218-2232 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_875024239 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Active learning Algorithms Applied geophysics Construction Earth sciences Earth, ocean, space entropy Exact sciences and technology hyperspectral imagery Hyperspectral imaging Hyperspectral sensors Image classification image information mining Image resolution Image sampling Internal geophysics Learning Learning systems margin sampling (MS) Mathematical models Methods Pixels query learning Remote sensing Spatial resolution Studies Support vector machine classification Support vector machines support vector machines (SVMs) Training very high resolution (VHR) imagery |
title | Active Learning Methods for Remote Sensing Image Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Learning%20Methods%20for%20Remote%20Sensing%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Tuia,%20D.&rft.date=2009-07-01&rft.volume=47&rft.issue=7&rft.spage=2218&rft.epage=2232&rft.pages=2218-2232&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2008.2010404&rft_dat=%3Cproquest_pasca%3E36325385%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857463029&rft_id=info:pmid/&rft_ieee_id=4812037&rfr_iscdi=true |