Loading…

Active Learning Methods for Remote Sensing Image Classification

In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its im...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2009-07, Vol.47 (7), p.2218-2232
Main Authors: Tuia, D., Ratle, F., Pacifici, F., Kanevski, M.F., Emery, W.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3
cites cdi_FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3
container_end_page 2232
container_issue 7
container_start_page 2218
container_title IEEE transactions on geoscience and remote sensing
container_volume 47
creator Tuia, D.
Ratle, F.
Pacifici, F.
Kanevski, M.F.
Emery, W.J.
description In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.
doi_str_mv 10.1109/TGRS.2008.2010404
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_875024239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4812037</ieee_id><sourcerecordid>36325385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gHgJgnqKzn5MsjlJKVqFiuDHedlsJ7qSJrqbCv57E1p68OBl5jDPvPPOy9gxh0vOobh6mT09XwoA3RcOCtQOG3FEnUKm1C4bAS-yVOhC7LODGD8AuEKej9j1xHX-m5I52dD45i15oO69XcSkakPyRMu2o-SZmjiM7pf2jZJpbWP0lXe2821zyPYqW0c62vQxe729eZnepfPH2f10Mk9df6dLMVdOlVmFLndImmNRIKEUrgSlFVIpSl6V4ATykgrHde-3KBclKodayUqO2cVa9zO0XyuKnVn66KiubUPtKhqdIwglZNGT5_-SMpMCpcYePP0DfrSr0PRfGN37zSSIQY2vIRfaGANV5jP4pQ0_hoMZkjdD8mZI3myS73fONsI2OltXwTbOx-2i4FoiZIOBkzXniWg7VpoLkLn8BU54igY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857463029</pqid></control><display><type>article</type><title>Active Learning Methods for Remote Sensing Image Classification</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tuia, D. ; Ratle, F. ; Pacifici, F. ; Kanevski, M.F. ; Emery, W.J.</creator><creatorcontrib>Tuia, D. ; Ratle, F. ; Pacifici, F. ; Kanevski, M.F. ; Emery, W.J.</creatorcontrib><description>In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2008.2010404</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Active learning ; Algorithms ; Applied geophysics ; Construction ; Earth sciences ; Earth, ocean, space ; entropy ; Exact sciences and technology ; hyperspectral imagery ; Hyperspectral imaging ; Hyperspectral sensors ; Image classification ; image information mining ; Image resolution ; Image sampling ; Internal geophysics ; Learning ; Learning systems ; margin sampling (MS) ; Mathematical models ; Methods ; Pixels ; query learning ; Remote sensing ; Spatial resolution ; Studies ; Support vector machine classification ; Support vector machines ; support vector machines (SVMs) ; Training ; very high resolution (VHR) imagery</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2009-07, Vol.47 (7), p.2218-2232</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3</citedby><cites>FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4812037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,54787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21835065$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tuia, D.</creatorcontrib><creatorcontrib>Ratle, F.</creatorcontrib><creatorcontrib>Pacifici, F.</creatorcontrib><creatorcontrib>Kanevski, M.F.</creatorcontrib><creatorcontrib>Emery, W.J.</creatorcontrib><title>Active Learning Methods for Remote Sensing Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.</description><subject>Active learning</subject><subject>Algorithms</subject><subject>Applied geophysics</subject><subject>Construction</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>entropy</subject><subject>Exact sciences and technology</subject><subject>hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Image classification</subject><subject>image information mining</subject><subject>Image resolution</subject><subject>Image sampling</subject><subject>Internal geophysics</subject><subject>Learning</subject><subject>Learning systems</subject><subject>margin sampling (MS)</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Pixels</subject><subject>query learning</subject><subject>Remote sensing</subject><subject>Spatial resolution</subject><subject>Studies</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>support vector machines (SVMs)</subject><subject>Training</subject><subject>very high resolution (VHR) imagery</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gHgJgnqKzn5MsjlJKVqFiuDHedlsJ7qSJrqbCv57E1p68OBl5jDPvPPOy9gxh0vOobh6mT09XwoA3RcOCtQOG3FEnUKm1C4bAS-yVOhC7LODGD8AuEKej9j1xHX-m5I52dD45i15oO69XcSkakPyRMu2o-SZmjiM7pf2jZJpbWP0lXe2821zyPYqW0c62vQxe729eZnepfPH2f10Mk9df6dLMVdOlVmFLndImmNRIKEUrgSlFVIpSl6V4ATykgrHde-3KBclKodayUqO2cVa9zO0XyuKnVn66KiubUPtKhqdIwglZNGT5_-SMpMCpcYePP0DfrSr0PRfGN37zSSIQY2vIRfaGANV5jP4pQ0_hoMZkjdD8mZI3myS73fONsI2OltXwTbOx-2i4FoiZIOBkzXniWg7VpoLkLn8BU54igY</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Tuia, D.</creator><creator>Ratle, F.</creator><creator>Pacifici, F.</creator><creator>Kanevski, M.F.</creator><creator>Emery, W.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20090701</creationdate><title>Active Learning Methods for Remote Sensing Image Classification</title><author>Tuia, D. ; Ratle, F. ; Pacifici, F. ; Kanevski, M.F. ; Emery, W.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Active learning</topic><topic>Algorithms</topic><topic>Applied geophysics</topic><topic>Construction</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>entropy</topic><topic>Exact sciences and technology</topic><topic>hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Image classification</topic><topic>image information mining</topic><topic>Image resolution</topic><topic>Image sampling</topic><topic>Internal geophysics</topic><topic>Learning</topic><topic>Learning systems</topic><topic>margin sampling (MS)</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Pixels</topic><topic>query learning</topic><topic>Remote sensing</topic><topic>Spatial resolution</topic><topic>Studies</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>support vector machines (SVMs)</topic><topic>Training</topic><topic>very high resolution (VHR) imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuia, D.</creatorcontrib><creatorcontrib>Ratle, F.</creatorcontrib><creatorcontrib>Pacifici, F.</creatorcontrib><creatorcontrib>Kanevski, M.F.</creatorcontrib><creatorcontrib>Emery, W.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuia, D.</au><au>Ratle, F.</au><au>Pacifici, F.</au><au>Kanevski, M.F.</au><au>Emery, W.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Learning Methods for Remote Sensing Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>47</volume><issue>7</issue><spage>2218</spage><epage>2232</epage><pages>2218-2232</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2008.2010404</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2009-07, Vol.47 (7), p.2218-2232
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_875024239
source IEEE Electronic Library (IEL) Journals
subjects Active learning
Algorithms
Applied geophysics
Construction
Earth sciences
Earth, ocean, space
entropy
Exact sciences and technology
hyperspectral imagery
Hyperspectral imaging
Hyperspectral sensors
Image classification
image information mining
Image resolution
Image sampling
Internal geophysics
Learning
Learning systems
margin sampling (MS)
Mathematical models
Methods
Pixels
query learning
Remote sensing
Spatial resolution
Studies
Support vector machine classification
Support vector machines
support vector machines (SVMs)
Training
very high resolution (VHR) imagery
title Active Learning Methods for Remote Sensing Image Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Learning%20Methods%20for%20Remote%20Sensing%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Tuia,%20D.&rft.date=2009-07-01&rft.volume=47&rft.issue=7&rft.spage=2218&rft.epage=2232&rft.pages=2218-2232&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2008.2010404&rft_dat=%3Cproquest_pasca%3E36325385%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-574c4b6f5c7c5e815995e532cb04845eb2b1fb0c251be9c180199bdb54c5843f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857463029&rft_id=info:pmid/&rft_ieee_id=4812037&rfr_iscdi=true