Loading…

A Large-Scale Hidden Semi-Markov Model for Anomaly Detection on User Browsing Behaviors

Many methods designed to create defenses against distributed denial of service (DDoS) attacks are focused on the IP and TCP layers instead of the high layer. They are not suitable for handling the new type of attack which is based on the application layer. In this paper, we introduce a new scheme to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking 2009-02, Vol.17 (1), p.54-65
Main Authors: Xie, Yi, Yu, Shun-Zheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-51139a56e7224deea3b131a75c92879bdb839800b492278ca279c71f23b0a93
cites cdi_FETCH-LOGICAL-c353t-51139a56e7224deea3b131a75c92879bdb839800b492278ca279c71f23b0a93
container_end_page 65
container_issue 1
container_start_page 54
container_title IEEE/ACM transactions on networking
container_volume 17
creator Xie, Yi
Yu, Shun-Zheng
description Many methods designed to create defenses against distributed denial of service (DDoS) attacks are focused on the IP and TCP layers instead of the high layer. They are not suitable for handling the new type of attack which is based on the application layer. In this paper, we introduce a new scheme to achieve early attack detection and filtering for the application-layer-based DDoS attack. An extended hidden semi-Markov model is proposed to describe the browsing behaviors of web surfers. In order to reduce the computational amount introduced by the model's large state space, a novel forward algorithm is derived for the online implementation of the model based on the M-algorithm. Entropy of the user's HTTP request sequence fitting to the model is used as a criterion to measure the user's normality. Finally, experiments are conducted to validate our model and algorithm.
doi_str_mv 10.1109/TNET.2008.923716
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_875024979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4515888</ieee_id><sourcerecordid>875024979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-51139a56e7224deea3b131a75c92879bdb839800b492278ca279c71f23b0a93</originalsourceid><addsrcrecordid>eNp90U1PwkAQBuDGaCKidxMvGw96Ku5H9-sIiGICegDjcbNtp1gsXdwtGP69JRgPHkwmmTk8M8nkjaJLgnuEYH03fx7NexRj1dOUSSKOog7hXMWUC3HczliwWAhNT6OzEJYYE4ap6ERvfTSxfgHxLLMVoHGZ51CjGazKeGr9h9uiqcuhQoXzqF-7la126B4ayJrS1ait1wAeDbz7CmW9QAN4t9vS-XAenRS2CnDx07vR7GE0H47jycvj07A_iTPGWRNzQpi2XICkNMkBLEsJI1byTFMldZqnimmFcZpoSqXKLJU6k6SgLMVWs250e7i69u5zA6ExqzJkUFW2BrcJRkmOaaLlXt78K1mS6ESIpIXXf-DSbXzd_mCUIC0iVLYIH1DmXQgeCrP25cr6nSHY7OMw-zjMPg5ziKNduTqslADwyxNOuFKKfQMz0YPZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861494127</pqid></control><display><type>article</type><title>A Large-Scale Hidden Semi-Markov Model for Anomaly Detection on User Browsing Behaviors</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Xie, Yi ; Yu, Shun-Zheng</creator><creatorcontrib>Xie, Yi ; Yu, Shun-Zheng</creatorcontrib><description>Many methods designed to create defenses against distributed denial of service (DDoS) attacks are focused on the IP and TCP layers instead of the high layer. They are not suitable for handling the new type of attack which is based on the application layer. In this paper, we introduce a new scheme to achieve early attack detection and filtering for the application-layer-based DDoS attack. An extended hidden semi-Markov model is proposed to describe the browsing behaviors of web surfers. In order to reduce the computational amount introduced by the model's large state space, a novel forward algorithm is derived for the online implementation of the model based on the M-algorithm. Entropy of the user's HTTP request sequence fitting to the model is used as a criterion to measure the user's normality. Finally, experiments are conducted to validate our model and algorithm.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2008.923716</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Anomaly detection ; Browsing ; browsing behaviors ; Computer crime ; DDoS ; Design methodology ; Entropy ; Filtering ; hidden semi-Markov Model ; Large-scale systems ; M-algorithm ; Materials handling ; Mathematical models ; Protocols ; State-space methods ; Statistics ; TCP (protocol) ; TCP/IP (protocol) ; TCPIP ; Web server</subject><ispartof>IEEE/ACM transactions on networking, 2009-02, Vol.17 (1), p.54-65</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-51139a56e7224deea3b131a75c92879bdb839800b492278ca279c71f23b0a93</citedby><cites>FETCH-LOGICAL-c353t-51139a56e7224deea3b131a75c92879bdb839800b492278ca279c71f23b0a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4515888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Yu, Shun-Zheng</creatorcontrib><title>A Large-Scale Hidden Semi-Markov Model for Anomaly Detection on User Browsing Behaviors</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>Many methods designed to create defenses against distributed denial of service (DDoS) attacks are focused on the IP and TCP layers instead of the high layer. They are not suitable for handling the new type of attack which is based on the application layer. In this paper, we introduce a new scheme to achieve early attack detection and filtering for the application-layer-based DDoS attack. An extended hidden semi-Markov model is proposed to describe the browsing behaviors of web surfers. In order to reduce the computational amount introduced by the model's large state space, a novel forward algorithm is derived for the online implementation of the model based on the M-algorithm. Entropy of the user's HTTP request sequence fitting to the model is used as a criterion to measure the user's normality. Finally, experiments are conducted to validate our model and algorithm.</description><subject>Algorithms</subject><subject>Anomaly detection</subject><subject>Browsing</subject><subject>browsing behaviors</subject><subject>Computer crime</subject><subject>DDoS</subject><subject>Design methodology</subject><subject>Entropy</subject><subject>Filtering</subject><subject>hidden semi-Markov Model</subject><subject>Large-scale systems</subject><subject>M-algorithm</subject><subject>Materials handling</subject><subject>Mathematical models</subject><subject>Protocols</subject><subject>State-space methods</subject><subject>Statistics</subject><subject>TCP (protocol)</subject><subject>TCP/IP (protocol)</subject><subject>TCPIP</subject><subject>Web server</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90U1PwkAQBuDGaCKidxMvGw96Ku5H9-sIiGICegDjcbNtp1gsXdwtGP69JRgPHkwmmTk8M8nkjaJLgnuEYH03fx7NexRj1dOUSSKOog7hXMWUC3HczliwWAhNT6OzEJYYE4ap6ERvfTSxfgHxLLMVoHGZ51CjGazKeGr9h9uiqcuhQoXzqF-7la126B4ayJrS1ait1wAeDbz7CmW9QAN4t9vS-XAenRS2CnDx07vR7GE0H47jycvj07A_iTPGWRNzQpi2XICkNMkBLEsJI1byTFMldZqnimmFcZpoSqXKLJU6k6SgLMVWs250e7i69u5zA6ExqzJkUFW2BrcJRkmOaaLlXt78K1mS6ESIpIXXf-DSbXzd_mCUIC0iVLYIH1DmXQgeCrP25cr6nSHY7OMw-zjMPg5ziKNduTqslADwyxNOuFKKfQMz0YPZ</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Xie, Yi</creator><creator>Yu, Shun-Zheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>A Large-Scale Hidden Semi-Markov Model for Anomaly Detection on User Browsing Behaviors</title><author>Xie, Yi ; Yu, Shun-Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-51139a56e7224deea3b131a75c92879bdb839800b492278ca279c71f23b0a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Anomaly detection</topic><topic>Browsing</topic><topic>browsing behaviors</topic><topic>Computer crime</topic><topic>DDoS</topic><topic>Design methodology</topic><topic>Entropy</topic><topic>Filtering</topic><topic>hidden semi-Markov Model</topic><topic>Large-scale systems</topic><topic>M-algorithm</topic><topic>Materials handling</topic><topic>Mathematical models</topic><topic>Protocols</topic><topic>State-space methods</topic><topic>Statistics</topic><topic>TCP (protocol)</topic><topic>TCP/IP (protocol)</topic><topic>TCPIP</topic><topic>Web server</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Yu, Shun-Zheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Yi</au><au>Yu, Shun-Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Large-Scale Hidden Semi-Markov Model for Anomaly Detection on User Browsing Behaviors</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>17</volume><issue>1</issue><spage>54</spage><epage>65</epage><pages>54-65</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>Many methods designed to create defenses against distributed denial of service (DDoS) attacks are focused on the IP and TCP layers instead of the high layer. They are not suitable for handling the new type of attack which is based on the application layer. In this paper, we introduce a new scheme to achieve early attack detection and filtering for the application-layer-based DDoS attack. An extended hidden semi-Markov model is proposed to describe the browsing behaviors of web surfers. In order to reduce the computational amount introduced by the model's large state space, a novel forward algorithm is derived for the online implementation of the model based on the M-algorithm. Entropy of the user's HTTP request sequence fitting to the model is used as a criterion to measure the user's normality. Finally, experiments are conducted to validate our model and algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2008.923716</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2009-02, Vol.17 (1), p.54-65
issn 1063-6692
1558-2566
language eng
recordid cdi_proquest_miscellaneous_875024979
source IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Algorithms
Anomaly detection
Browsing
browsing behaviors
Computer crime
DDoS
Design methodology
Entropy
Filtering
hidden semi-Markov Model
Large-scale systems
M-algorithm
Materials handling
Mathematical models
Protocols
State-space methods
Statistics
TCP (protocol)
TCP/IP (protocol)
TCPIP
Web server
title A Large-Scale Hidden Semi-Markov Model for Anomaly Detection on User Browsing Behaviors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Large-Scale%20Hidden%20Semi-Markov%20Model%20for%20Anomaly%20Detection%20on%20User%20Browsing%20Behaviors&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Xie,%20Yi&rft.date=2009-02-01&rft.volume=17&rft.issue=1&rft.spage=54&rft.epage=65&rft.pages=54-65&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2008.923716&rft_dat=%3Cproquest_ieee_%3E875024979%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-51139a56e7224deea3b131a75c92879bdb839800b492278ca279c71f23b0a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861494127&rft_id=info:pmid/&rft_ieee_id=4515888&rfr_iscdi=true