Loading…
On the Complexity of Computing the Hypervolume Indicator
The goal of multiobjective optimization is to find a set of best compromise solutions for typically conflicting objectives. Due to the complex nature of most real-life problems, only an approximation to such an optimal set can be obtained within reasonable (computing) time. To compare such approxima...
Saved in:
Published in: | IEEE transactions on evolutionary computation 2009-10, Vol.13 (5), p.1075-1082 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3 |
container_end_page | 1082 |
container_issue | 5 |
container_start_page | 1075 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 13 |
creator | Beume, N. Fonseca, C.M. Lopez-Ibanez, M. Paquete, L. Vahrenhold, J. |
description | The goal of multiobjective optimization is to find a set of best compromise solutions for typically conflicting objectives. Due to the complex nature of most real-life problems, only an approximation to such an optimal set can be obtained within reasonable (computing) time. To compare such approximations, and thereby the performance of multiobjective optimizers providing them, unary quality measures are usually applied. Among these, the hypervolume indicator (or S-metric) is of particular relevance due to its favorable properties. Moreover, this indicator has been successfully integrated into stochastic optimizers, such as evolutionary algorithms, where it serves as a guidance criterion for finding good approximations to the Pareto front. Recent results show that computing the hypervolume indicator can be seen as solving a specialized version of Klee's measure problem. In general, Klee's measure problem can be solved with O(n logn + nd/2logn) comparisons for an input instance of size n in d dimensions; as of this writing, it is unknown whether a lower bound higher than Omega( n log n ) can be proven. In this paper, we derive a lower bound of Omega(n log n) for the complexity of computing the hypervolume indicator in any number of dimensions d > 1 by reducing the so-called uniformgap problem to it. For the 3-D case, we also present a matching upper bound of O(n log n) comparisons that is obtained by extending an algorithm for finding the maxima of a point set. |
doi_str_mv | 10.1109/TEVC.2009.2015575 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_875028072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5208224</ieee_id><sourcerecordid>2294849751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWKs_QLwEQT2lzmx2s7tHCdUWCr1U8bZsko2m5KPuJmL_vUlbevDgZXaWeeaFeTzvGmGCCPJxNX2LJwRA9gUZ4-zEG6GkGACQ6LTvQciAc_F-7l04twZAylCOPLGs_fbT-HFTbUrzU7Rbv8l3v64t6o_dbLbdGPvdlF1l_HmdFaluG3vpneW6dObq8I691-fpKp4Fi-XLPH5aBCmjpA2IxIwSSSKWSC45NbkUWic6N9qA4RqzMAOCIQ0F1UkuoiwSIWNJFnGZZSQPx97DPndjm6_OuFZVhUtNWeraNJ1TgjMgAjjpyft_yZD1ZgCxB2__gOums3V_hRKMUyJoCD2Eeyi1jXPW5Gpji0rbrUJQg3I1KFeDcnVQ3u_cHYK1S3WZW12nhTsuEoJMchyyb_ZcYYw5jhkBQQgNfwHipogy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857428430</pqid></control><display><type>article</type><title>On the Complexity of Computing the Hypervolume Indicator</title><source>IEEE Xplore All Conference Series</source><creator>Beume, N. ; Fonseca, C.M. ; Lopez-Ibanez, M. ; Paquete, L. ; Vahrenhold, J.</creator><creatorcontrib>Beume, N. ; Fonseca, C.M. ; Lopez-Ibanez, M. ; Paquete, L. ; Vahrenhold, J.</creatorcontrib><description>The goal of multiobjective optimization is to find a set of best compromise solutions for typically conflicting objectives. Due to the complex nature of most real-life problems, only an approximation to such an optimal set can be obtained within reasonable (computing) time. To compare such approximations, and thereby the performance of multiobjective optimizers providing them, unary quality measures are usually applied. Among these, the hypervolume indicator (or S-metric) is of particular relevance due to its favorable properties. Moreover, this indicator has been successfully integrated into stochastic optimizers, such as evolutionary algorithms, where it serves as a guidance criterion for finding good approximations to the Pareto front. Recent results show that computing the hypervolume indicator can be seen as solving a specialized version of Klee's measure problem. In general, Klee's measure problem can be solved with O(n logn + nd/2logn) comparisons for an input instance of size n in d dimensions; as of this writing, it is unknown whether a lower bound higher than Omega( n log n ) can be proven. In this paper, we derive a lower bound of Omega(n log n) for the complexity of computing the hypervolume indicator in any number of dimensions d > 1 by reducing the so-called uniformgap problem to it. For the 3-D case, we also present a matching upper bound of O(n log n) comparisons that is obtained by extending an algorithm for finding the maxima of a point set.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2009.2015575</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Approximation ; Artificial intelligence ; Complexity ; Complexity analysis ; Computation ; Computational geometry ; Computer science ; Computer science; control theory; systems ; Evolutionary algorithms ; Evolutionary computation ; Exact sciences and technology ; Indicators ; Informatics ; Laboratories ; Learning and adaptive systems ; Lower bounds ; Mathematical analysis ; multiobjective optimization ; Operations research ; Optimization ; Pareto optimization ; Performance analysis ; performance assessment ; Size measurement ; Stochastic processes ; Studies ; Theoretical computing ; Upper bound</subject><ispartof>IEEE transactions on evolutionary computation, 2009-10, Vol.13 (5), p.1075-1082</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3</citedby><cites>FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5208224$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5208224$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22159710$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Beume, N.</creatorcontrib><creatorcontrib>Fonseca, C.M.</creatorcontrib><creatorcontrib>Lopez-Ibanez, M.</creatorcontrib><creatorcontrib>Paquete, L.</creatorcontrib><creatorcontrib>Vahrenhold, J.</creatorcontrib><title>On the Complexity of Computing the Hypervolume Indicator</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>The goal of multiobjective optimization is to find a set of best compromise solutions for typically conflicting objectives. Due to the complex nature of most real-life problems, only an approximation to such an optimal set can be obtained within reasonable (computing) time. To compare such approximations, and thereby the performance of multiobjective optimizers providing them, unary quality measures are usually applied. Among these, the hypervolume indicator (or S-metric) is of particular relevance due to its favorable properties. Moreover, this indicator has been successfully integrated into stochastic optimizers, such as evolutionary algorithms, where it serves as a guidance criterion for finding good approximations to the Pareto front. Recent results show that computing the hypervolume indicator can be seen as solving a specialized version of Klee's measure problem. In general, Klee's measure problem can be solved with O(n logn + nd/2logn) comparisons for an input instance of size n in d dimensions; as of this writing, it is unknown whether a lower bound higher than Omega( n log n ) can be proven. In this paper, we derive a lower bound of Omega(n log n) for the complexity of computing the hypervolume indicator in any number of dimensions d > 1 by reducing the so-called uniformgap problem to it. For the 3-D case, we also present a matching upper bound of O(n log n) comparisons that is obtained by extending an algorithm for finding the maxima of a point set.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Complexity</subject><subject>Complexity analysis</subject><subject>Computation</subject><subject>Computational geometry</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Exact sciences and technology</subject><subject>Indicators</subject><subject>Informatics</subject><subject>Laboratories</subject><subject>Learning and adaptive systems</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>multiobjective optimization</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Performance analysis</subject><subject>performance assessment</subject><subject>Size measurement</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Theoretical computing</subject><subject>Upper bound</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhoMoWKs_QLwEQT2lzmx2s7tHCdUWCr1U8bZsko2m5KPuJmL_vUlbevDgZXaWeeaFeTzvGmGCCPJxNX2LJwRA9gUZ4-zEG6GkGACQ6LTvQciAc_F-7l04twZAylCOPLGs_fbT-HFTbUrzU7Rbv8l3v64t6o_dbLbdGPvdlF1l_HmdFaluG3vpneW6dObq8I691-fpKp4Fi-XLPH5aBCmjpA2IxIwSSSKWSC45NbkUWic6N9qA4RqzMAOCIQ0F1UkuoiwSIWNJFnGZZSQPx97DPndjm6_OuFZVhUtNWeraNJ1TgjMgAjjpyft_yZD1ZgCxB2__gOums3V_hRKMUyJoCD2Eeyi1jXPW5Gpji0rbrUJQg3I1KFeDcnVQ3u_cHYK1S3WZW12nhTsuEoJMchyyb_ZcYYw5jhkBQQgNfwHipogy</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Beume, N.</creator><creator>Fonseca, C.M.</creator><creator>Lopez-Ibanez, M.</creator><creator>Paquete, L.</creator><creator>Vahrenhold, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20091001</creationdate><title>On the Complexity of Computing the Hypervolume Indicator</title><author>Beume, N. ; Fonseca, C.M. ; Lopez-Ibanez, M. ; Paquete, L. ; Vahrenhold, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Complexity</topic><topic>Complexity analysis</topic><topic>Computation</topic><topic>Computational geometry</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Exact sciences and technology</topic><topic>Indicators</topic><topic>Informatics</topic><topic>Laboratories</topic><topic>Learning and adaptive systems</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>multiobjective optimization</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Performance analysis</topic><topic>performance assessment</topic><topic>Size measurement</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Theoretical computing</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beume, N.</creatorcontrib><creatorcontrib>Fonseca, C.M.</creatorcontrib><creatorcontrib>Lopez-Ibanez, M.</creatorcontrib><creatorcontrib>Paquete, L.</creatorcontrib><creatorcontrib>Vahrenhold, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beume, N.</au><au>Fonseca, C.M.</au><au>Lopez-Ibanez, M.</au><au>Paquete, L.</au><au>Vahrenhold, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Complexity of Computing the Hypervolume Indicator</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>13</volume><issue>5</issue><spage>1075</spage><epage>1082</epage><pages>1075-1082</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>The goal of multiobjective optimization is to find a set of best compromise solutions for typically conflicting objectives. Due to the complex nature of most real-life problems, only an approximation to such an optimal set can be obtained within reasonable (computing) time. To compare such approximations, and thereby the performance of multiobjective optimizers providing them, unary quality measures are usually applied. Among these, the hypervolume indicator (or S-metric) is of particular relevance due to its favorable properties. Moreover, this indicator has been successfully integrated into stochastic optimizers, such as evolutionary algorithms, where it serves as a guidance criterion for finding good approximations to the Pareto front. Recent results show that computing the hypervolume indicator can be seen as solving a specialized version of Klee's measure problem. In general, Klee's measure problem can be solved with O(n logn + nd/2logn) comparisons for an input instance of size n in d dimensions; as of this writing, it is unknown whether a lower bound higher than Omega( n log n ) can be proven. In this paper, we derive a lower bound of Omega(n log n) for the complexity of computing the hypervolume indicator in any number of dimensions d > 1 by reducing the so-called uniformgap problem to it. For the 3-D case, we also present a matching upper bound of O(n log n) comparisons that is obtained by extending an algorithm for finding the maxima of a point set.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2009.2015575</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2009-10, Vol.13 (5), p.1075-1082 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_proquest_miscellaneous_875028072 |
source | IEEE Xplore All Conference Series |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Approximation Artificial intelligence Complexity Complexity analysis Computation Computational geometry Computer science Computer science control theory systems Evolutionary algorithms Evolutionary computation Exact sciences and technology Indicators Informatics Laboratories Learning and adaptive systems Lower bounds Mathematical analysis multiobjective optimization Operations research Optimization Pareto optimization Performance analysis performance assessment Size measurement Stochastic processes Studies Theoretical computing Upper bound |
title | On the Complexity of Computing the Hypervolume Indicator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Complexity%20of%20Computing%20the%20Hypervolume%20Indicator&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Beume,%20N.&rft.date=2009-10-01&rft.volume=13&rft.issue=5&rft.spage=1075&rft.epage=1082&rft.pages=1075-1082&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2009.2015575&rft_dat=%3Cproquest_CHZPO%3E2294849751%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857428430&rft_id=info:pmid/&rft_ieee_id=5208224&rfr_iscdi=true |