Loading…

On the Complexity of Computing the Hypervolume Indicator

The goal of multiobjective optimization is to find a set of best compromise solutions for typically conflicting objectives. Due to the complex nature of most real-life problems, only an approximation to such an optimal set can be obtained within reasonable (computing) time. To compare such approxima...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation 2009-10, Vol.13 (5), p.1075-1082
Main Authors: Beume, N., Fonseca, C.M., Lopez-Ibanez, M., Paquete, L., Vahrenhold, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3
cites cdi_FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3
container_end_page 1082
container_issue 5
container_start_page 1075
container_title IEEE transactions on evolutionary computation
container_volume 13
creator Beume, N.
Fonseca, C.M.
Lopez-Ibanez, M.
Paquete, L.
Vahrenhold, J.
description The goal of multiobjective optimization is to find a set of best compromise solutions for typically conflicting objectives. Due to the complex nature of most real-life problems, only an approximation to such an optimal set can be obtained within reasonable (computing) time. To compare such approximations, and thereby the performance of multiobjective optimizers providing them, unary quality measures are usually applied. Among these, the hypervolume indicator (or S-metric) is of particular relevance due to its favorable properties. Moreover, this indicator has been successfully integrated into stochastic optimizers, such as evolutionary algorithms, where it serves as a guidance criterion for finding good approximations to the Pareto front. Recent results show that computing the hypervolume indicator can be seen as solving a specialized version of Klee's measure problem. In general, Klee's measure problem can be solved with O(n logn + nd/2logn) comparisons for an input instance of size n in d dimensions; as of this writing, it is unknown whether a lower bound higher than Omega( n log n ) can be proven. In this paper, we derive a lower bound of Omega(n log n) for the complexity of computing the hypervolume indicator in any number of dimensions d > 1 by reducing the so-called uniformgap problem to it. For the 3-D case, we also present a matching upper bound of O(n log n) comparisons that is obtained by extending an algorithm for finding the maxima of a point set.
doi_str_mv 10.1109/TEVC.2009.2015575
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_875028072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5208224</ieee_id><sourcerecordid>2294849751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWKs_QLwEQT2lzmx2s7tHCdUWCr1U8bZsko2m5KPuJmL_vUlbevDgZXaWeeaFeTzvGmGCCPJxNX2LJwRA9gUZ4-zEG6GkGACQ6LTvQciAc_F-7l04twZAylCOPLGs_fbT-HFTbUrzU7Rbv8l3v64t6o_dbLbdGPvdlF1l_HmdFaluG3vpneW6dObq8I691-fpKp4Fi-XLPH5aBCmjpA2IxIwSSSKWSC45NbkUWic6N9qA4RqzMAOCIQ0F1UkuoiwSIWNJFnGZZSQPx97DPndjm6_OuFZVhUtNWeraNJ1TgjMgAjjpyft_yZD1ZgCxB2__gOums3V_hRKMUyJoCD2Eeyi1jXPW5Gpji0rbrUJQg3I1KFeDcnVQ3u_cHYK1S3WZW12nhTsuEoJMchyyb_ZcYYw5jhkBQQgNfwHipogy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857428430</pqid></control><display><type>article</type><title>On the Complexity of Computing the Hypervolume Indicator</title><source>IEEE Xplore All Conference Series</source><creator>Beume, N. ; Fonseca, C.M. ; Lopez-Ibanez, M. ; Paquete, L. ; Vahrenhold, J.</creator><creatorcontrib>Beume, N. ; Fonseca, C.M. ; Lopez-Ibanez, M. ; Paquete, L. ; Vahrenhold, J.</creatorcontrib><description>The goal of multiobjective optimization is to find a set of best compromise solutions for typically conflicting objectives. Due to the complex nature of most real-life problems, only an approximation to such an optimal set can be obtained within reasonable (computing) time. To compare such approximations, and thereby the performance of multiobjective optimizers providing them, unary quality measures are usually applied. Among these, the hypervolume indicator (or S-metric) is of particular relevance due to its favorable properties. Moreover, this indicator has been successfully integrated into stochastic optimizers, such as evolutionary algorithms, where it serves as a guidance criterion for finding good approximations to the Pareto front. Recent results show that computing the hypervolume indicator can be seen as solving a specialized version of Klee's measure problem. In general, Klee's measure problem can be solved with O(n logn + nd/2logn) comparisons for an input instance of size n in d dimensions; as of this writing, it is unknown whether a lower bound higher than Omega( n log n ) can be proven. In this paper, we derive a lower bound of Omega(n log n) for the complexity of computing the hypervolume indicator in any number of dimensions d &gt; 1 by reducing the so-called uniformgap problem to it. For the 3-D case, we also present a matching upper bound of O(n log n) comparisons that is obtained by extending an algorithm for finding the maxima of a point set.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2009.2015575</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Approximation ; Artificial intelligence ; Complexity ; Complexity analysis ; Computation ; Computational geometry ; Computer science ; Computer science; control theory; systems ; Evolutionary algorithms ; Evolutionary computation ; Exact sciences and technology ; Indicators ; Informatics ; Laboratories ; Learning and adaptive systems ; Lower bounds ; Mathematical analysis ; multiobjective optimization ; Operations research ; Optimization ; Pareto optimization ; Performance analysis ; performance assessment ; Size measurement ; Stochastic processes ; Studies ; Theoretical computing ; Upper bound</subject><ispartof>IEEE transactions on evolutionary computation, 2009-10, Vol.13 (5), p.1075-1082</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3</citedby><cites>FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5208224$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5208224$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22159710$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Beume, N.</creatorcontrib><creatorcontrib>Fonseca, C.M.</creatorcontrib><creatorcontrib>Lopez-Ibanez, M.</creatorcontrib><creatorcontrib>Paquete, L.</creatorcontrib><creatorcontrib>Vahrenhold, J.</creatorcontrib><title>On the Complexity of Computing the Hypervolume Indicator</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>The goal of multiobjective optimization is to find a set of best compromise solutions for typically conflicting objectives. Due to the complex nature of most real-life problems, only an approximation to such an optimal set can be obtained within reasonable (computing) time. To compare such approximations, and thereby the performance of multiobjective optimizers providing them, unary quality measures are usually applied. Among these, the hypervolume indicator (or S-metric) is of particular relevance due to its favorable properties. Moreover, this indicator has been successfully integrated into stochastic optimizers, such as evolutionary algorithms, where it serves as a guidance criterion for finding good approximations to the Pareto front. Recent results show that computing the hypervolume indicator can be seen as solving a specialized version of Klee's measure problem. In general, Klee's measure problem can be solved with O(n logn + nd/2logn) comparisons for an input instance of size n in d dimensions; as of this writing, it is unknown whether a lower bound higher than Omega( n log n ) can be proven. In this paper, we derive a lower bound of Omega(n log n) for the complexity of computing the hypervolume indicator in any number of dimensions d &gt; 1 by reducing the so-called uniformgap problem to it. For the 3-D case, we also present a matching upper bound of O(n log n) comparisons that is obtained by extending an algorithm for finding the maxima of a point set.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Complexity</subject><subject>Complexity analysis</subject><subject>Computation</subject><subject>Computational geometry</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Exact sciences and technology</subject><subject>Indicators</subject><subject>Informatics</subject><subject>Laboratories</subject><subject>Learning and adaptive systems</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>multiobjective optimization</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Performance analysis</subject><subject>performance assessment</subject><subject>Size measurement</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Theoretical computing</subject><subject>Upper bound</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhoMoWKs_QLwEQT2lzmx2s7tHCdUWCr1U8bZsko2m5KPuJmL_vUlbevDgZXaWeeaFeTzvGmGCCPJxNX2LJwRA9gUZ4-zEG6GkGACQ6LTvQciAc_F-7l04twZAylCOPLGs_fbT-HFTbUrzU7Rbv8l3v64t6o_dbLbdGPvdlF1l_HmdFaluG3vpneW6dObq8I691-fpKp4Fi-XLPH5aBCmjpA2IxIwSSSKWSC45NbkUWic6N9qA4RqzMAOCIQ0F1UkuoiwSIWNJFnGZZSQPx97DPndjm6_OuFZVhUtNWeraNJ1TgjMgAjjpyft_yZD1ZgCxB2__gOums3V_hRKMUyJoCD2Eeyi1jXPW5Gpji0rbrUJQg3I1KFeDcnVQ3u_cHYK1S3WZW12nhTsuEoJMchyyb_ZcYYw5jhkBQQgNfwHipogy</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Beume, N.</creator><creator>Fonseca, C.M.</creator><creator>Lopez-Ibanez, M.</creator><creator>Paquete, L.</creator><creator>Vahrenhold, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20091001</creationdate><title>On the Complexity of Computing the Hypervolume Indicator</title><author>Beume, N. ; Fonseca, C.M. ; Lopez-Ibanez, M. ; Paquete, L. ; Vahrenhold, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Complexity</topic><topic>Complexity analysis</topic><topic>Computation</topic><topic>Computational geometry</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Exact sciences and technology</topic><topic>Indicators</topic><topic>Informatics</topic><topic>Laboratories</topic><topic>Learning and adaptive systems</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>multiobjective optimization</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Performance analysis</topic><topic>performance assessment</topic><topic>Size measurement</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Theoretical computing</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beume, N.</creatorcontrib><creatorcontrib>Fonseca, C.M.</creatorcontrib><creatorcontrib>Lopez-Ibanez, M.</creatorcontrib><creatorcontrib>Paquete, L.</creatorcontrib><creatorcontrib>Vahrenhold, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beume, N.</au><au>Fonseca, C.M.</au><au>Lopez-Ibanez, M.</au><au>Paquete, L.</au><au>Vahrenhold, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Complexity of Computing the Hypervolume Indicator</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>13</volume><issue>5</issue><spage>1075</spage><epage>1082</epage><pages>1075-1082</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>The goal of multiobjective optimization is to find a set of best compromise solutions for typically conflicting objectives. Due to the complex nature of most real-life problems, only an approximation to such an optimal set can be obtained within reasonable (computing) time. To compare such approximations, and thereby the performance of multiobjective optimizers providing them, unary quality measures are usually applied. Among these, the hypervolume indicator (or S-metric) is of particular relevance due to its favorable properties. Moreover, this indicator has been successfully integrated into stochastic optimizers, such as evolutionary algorithms, where it serves as a guidance criterion for finding good approximations to the Pareto front. Recent results show that computing the hypervolume indicator can be seen as solving a specialized version of Klee's measure problem. In general, Klee's measure problem can be solved with O(n logn + nd/2logn) comparisons for an input instance of size n in d dimensions; as of this writing, it is unknown whether a lower bound higher than Omega( n log n ) can be proven. In this paper, we derive a lower bound of Omega(n log n) for the complexity of computing the hypervolume indicator in any number of dimensions d &gt; 1 by reducing the so-called uniformgap problem to it. For the 3-D case, we also present a matching upper bound of O(n log n) comparisons that is obtained by extending an algorithm for finding the maxima of a point set.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2009.2015575</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2009-10, Vol.13 (5), p.1075-1082
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_miscellaneous_875028072
source IEEE Xplore All Conference Series
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Approximation
Artificial intelligence
Complexity
Complexity analysis
Computation
Computational geometry
Computer science
Computer science
control theory
systems
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
Indicators
Informatics
Laboratories
Learning and adaptive systems
Lower bounds
Mathematical analysis
multiobjective optimization
Operations research
Optimization
Pareto optimization
Performance analysis
performance assessment
Size measurement
Stochastic processes
Studies
Theoretical computing
Upper bound
title On the Complexity of Computing the Hypervolume Indicator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Complexity%20of%20Computing%20the%20Hypervolume%20Indicator&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Beume,%20N.&rft.date=2009-10-01&rft.volume=13&rft.issue=5&rft.spage=1075&rft.epage=1082&rft.pages=1075-1082&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2009.2015575&rft_dat=%3Cproquest_CHZPO%3E2294849751%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-291d429265b97974ef98aabafeae0e7a1d3d02134384abf86d68355bd679dd2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857428430&rft_id=info:pmid/&rft_ieee_id=5208224&rfr_iscdi=true