Loading…
Development and Experimental Evaluation of a Slip Angle Estimator for Vehicle Stability Control
Real-time knowledge of the slip angle in a vehicle is useful in many active vehicle safety applications, including yaw stability control, rollover prevention, and lane departure avoidance. Sensors to measure slip angle, including two-antenna GPS systems and optical sensors, are too expensive for ord...
Saved in:
Published in: | IEEE transactions on control systems technology 2009-01, Vol.17 (1), p.78-88 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Real-time knowledge of the slip angle in a vehicle is useful in many active vehicle safety applications, including yaw stability control, rollover prevention, and lane departure avoidance. Sensors to measure slip angle, including two-antenna GPS systems and optical sensors, are too expensive for ordinary automotive applications. This paper develops a real-time algorithm for estimation of slip angle using inexpensive sensors normally available for yaw stability control applications. The algorithm utilizes a combination of model-based estimation and kinematics-based estimation. Compared with previously published results on slip angle estimation, this present paper compensates for the presence of road bank angle and variations in tire-road characteristics. The developed algorithm is evaluated through experimental tests on a Volvo XC90 sport utility vehicle. Detailed experimental results show that the developed system can reliably estimate slip angle for a variety of test maneuvers. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2008.922503 |