Loading…
Preparation and Characterization of Agar/Clay Nanocomposite Films: The Effect of Clay Type
: Agar‐based nanocomposite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B, and Cloisite 20A, were prepared using a solvent casting method, and their tensile, water vapor barrier, and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), a...
Saved in:
Published in: | Journal of food science 2011-04, Vol.76 (3), p.N40-N48 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123 |
---|---|
cites | cdi_FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123 |
container_end_page | N48 |
container_issue | 3 |
container_start_page | N40 |
container_title | Journal of food science |
container_volume | 76 |
creator | Rhim, Jong-Whan Lee, Soo-Bin Hong, Seok-In |
description | : Agar‐based nanocomposite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B, and Cloisite 20A, were prepared using a solvent casting method, and their tensile, water vapor barrier, and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of control agar film were 29.7 ± 1.7 MPa, 45.3 ± 9.6%, and (2.22 ± 0.19) × 10−9 g·m/m2·s·Pa, respectively. All the film properties tested, including transmittance, tensile properties, WVP, and X‐ray diffraction patterns, indicated that Cloisite Na+ was the most compatible with agar matrix. TS of the nanocomposite films prepared with 5% Cloisite Na+ increased by 18%, while WVP of the nanocomposite films decreased by 24% through nanoclay compounding. Among the agar/clay nanocomposite films tested, only agar/Cloisite 30B nanocomposite film showed a bacteriostatic function against Listeria monocytogenes. |
doi_str_mv | 10.1111/j.1750-3841.2011.02049.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875032621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348228761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoModq3-BRkE8Wqm-Z6MF0IZu1Upa6ErgjchZs7YrPPVZBZ3_fVmOusK3mhukpM85yHJi1BCcEbiONtkJBc4ZYqTjGJCMkwxL7LdA7Q4HjxEC4wpTQnh-Ql6EsIGTzWTj9EJJYIJJcgCfbn2MBhvRtd3iemqpLyNlR3Bu5_zZl8n59-MPysbs09Wputt3w59cCMkS9e04XWyvoXkoq7BjhN8z633AzxFj2rTBHh2mE_Rp-XFunyXXn28fF-eX6WWF7JIC2NkxYRkFcW5rSUURlqLMRQUA82lAEUAKkFsrQTmObO2MLngvOYVwYSyU_Rq9g6-v9tCGHXrgoWmMR3026BV_BFGJSX_JiXPlSRMRPLFX-Sm3_ouPiNCUkhB1KRTM2R9H4KHWg_etcbvNcF6yklv9BSHnuLQU076Pie9i63PD_7t1xaqY-PvYCLw8gCYYE1Te9NZF_5wHCuJlYrcm5n74RrY__cF9Ifl25tpGQXpLHBhhN1RYPx3LXOWC_15danLm3VxvSJcr9gvuJS68g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866565181</pqid></control><display><type>article</type><title>Preparation and Characterization of Agar/Clay Nanocomposite Films: The Effect of Clay Type</title><source>Wiley</source><creator>Rhim, Jong-Whan ; Lee, Soo-Bin ; Hong, Seok-In</creator><creatorcontrib>Rhim, Jong-Whan ; Lee, Soo-Bin ; Hong, Seok-In</creatorcontrib><description>: Agar‐based nanocomposite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B, and Cloisite 20A, were prepared using a solvent casting method, and their tensile, water vapor barrier, and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of control agar film were 29.7 ± 1.7 MPa, 45.3 ± 9.6%, and (2.22 ± 0.19) × 10−9 g·m/m2·s·Pa, respectively. All the film properties tested, including transmittance, tensile properties, WVP, and X‐ray diffraction patterns, indicated that Cloisite Na+ was the most compatible with agar matrix. TS of the nanocomposite films prepared with 5% Cloisite Na+ increased by 18%, while WVP of the nanocomposite films decreased by 24% through nanoclay compounding. Among the agar/clay nanocomposite films tested, only agar/Cloisite 30B nanocomposite film showed a bacteriostatic function against Listeria monocytogenes.</description><identifier>ISSN: 0022-1147</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/j.1750-3841.2011.02049.x</identifier><identifier>PMID: 21535851</identifier><identifier>CODEN: JFDSAZ</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Agar ; Agar - chemistry ; Agar - metabolism ; Agar - ultrastructure ; Aluminum Silicates - chemistry ; Aluminum Silicates - metabolism ; Aluminum Silicates - pharmacology ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; antimicrobial activity ; Bentonite - chemistry ; Bentonite - metabolism ; Bentonite - pharmacology ; Biological and medical sciences ; Chemical Phenomena ; Clay ; Clay (material) ; Color ; Diffraction ; Food industries ; Food microbiology ; Food Packaging ; Food science ; Foods ; Fundamental and applied biological sciences. Psychology ; Gram-positive bacteria ; Listeria monocytogenes - drug effects ; Materials elasticity ; Mechanical Phenomena ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Microscopy, Atomic Force ; Microscopy, Electron, Scanning ; nanocomposite films ; Nanocomposites ; Nanocomposites - chemistry ; Nanocomposites - ultrastructure ; Nanomaterials ; Nanostructure ; organoclays ; Permeability ; physical properties ; Steam ; Surface Properties ; Tensile Strength ; Water - chemistry ; X-Ray Diffraction</subject><ispartof>Journal of food science, 2011-04, Vol.76 (3), p.N40-N48</ispartof><rights>2011 Institute of Food Technologists</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Institute of Food Technologists Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123</citedby><cites>FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24086088$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21535851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rhim, Jong-Whan</creatorcontrib><creatorcontrib>Lee, Soo-Bin</creatorcontrib><creatorcontrib>Hong, Seok-In</creatorcontrib><title>Preparation and Characterization of Agar/Clay Nanocomposite Films: The Effect of Clay Type</title><title>Journal of food science</title><addtitle>J Food Sci</addtitle><description>: Agar‐based nanocomposite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B, and Cloisite 20A, were prepared using a solvent casting method, and their tensile, water vapor barrier, and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of control agar film were 29.7 ± 1.7 MPa, 45.3 ± 9.6%, and (2.22 ± 0.19) × 10−9 g·m/m2·s·Pa, respectively. All the film properties tested, including transmittance, tensile properties, WVP, and X‐ray diffraction patterns, indicated that Cloisite Na+ was the most compatible with agar matrix. TS of the nanocomposite films prepared with 5% Cloisite Na+ increased by 18%, while WVP of the nanocomposite films decreased by 24% through nanoclay compounding. Among the agar/clay nanocomposite films tested, only agar/Cloisite 30B nanocomposite film showed a bacteriostatic function against Listeria monocytogenes.</description><subject>Agar</subject><subject>Agar - chemistry</subject><subject>Agar - metabolism</subject><subject>Agar - ultrastructure</subject><subject>Aluminum Silicates - chemistry</subject><subject>Aluminum Silicates - metabolism</subject><subject>Aluminum Silicates - pharmacology</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antimicrobial activity</subject><subject>Bentonite - chemistry</subject><subject>Bentonite - metabolism</subject><subject>Bentonite - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Chemical Phenomena</subject><subject>Clay</subject><subject>Clay (material)</subject><subject>Color</subject><subject>Diffraction</subject><subject>Food industries</subject><subject>Food microbiology</subject><subject>Food Packaging</subject><subject>Food science</subject><subject>Foods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gram-positive bacteria</subject><subject>Listeria monocytogenes - drug effects</subject><subject>Materials elasticity</subject><subject>Mechanical Phenomena</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Scanning</subject><subject>nanocomposite films</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanocomposites - ultrastructure</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>organoclays</subject><subject>Permeability</subject><subject>physical properties</subject><subject>Steam</subject><subject>Surface Properties</subject><subject>Tensile Strength</subject><subject>Water - chemistry</subject><subject>X-Ray Diffraction</subject><issn>0022-1147</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkV1rFDEUhoModq3-BRkE8Wqm-Z6MF0IZu1Upa6ErgjchZs7YrPPVZBZ3_fVmOusK3mhukpM85yHJi1BCcEbiONtkJBc4ZYqTjGJCMkwxL7LdA7Q4HjxEC4wpTQnh-Ql6EsIGTzWTj9EJJYIJJcgCfbn2MBhvRtd3iemqpLyNlR3Bu5_zZl8n59-MPysbs09Wputt3w59cCMkS9e04XWyvoXkoq7BjhN8z633AzxFj2rTBHh2mE_Rp-XFunyXXn28fF-eX6WWF7JIC2NkxYRkFcW5rSUURlqLMRQUA82lAEUAKkFsrQTmObO2MLngvOYVwYSyU_Rq9g6-v9tCGHXrgoWmMR3026BV_BFGJSX_JiXPlSRMRPLFX-Sm3_ouPiNCUkhB1KRTM2R9H4KHWg_etcbvNcF6yklv9BSHnuLQU076Pie9i63PD_7t1xaqY-PvYCLw8gCYYE1Te9NZF_5wHCuJlYrcm5n74RrY__cF9Ifl25tpGQXpLHBhhN1RYPx3LXOWC_15danLm3VxvSJcr9gvuJS68g</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Rhim, Jong-Whan</creator><creator>Lee, Soo-Bin</creator><creator>Hong, Seok-In</creator><general>Blackwell Publishing Inc</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201104</creationdate><title>Preparation and Characterization of Agar/Clay Nanocomposite Films: The Effect of Clay Type</title><author>Rhim, Jong-Whan ; Lee, Soo-Bin ; Hong, Seok-In</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agar</topic><topic>Agar - chemistry</topic><topic>Agar - metabolism</topic><topic>Agar - ultrastructure</topic><topic>Aluminum Silicates - chemistry</topic><topic>Aluminum Silicates - metabolism</topic><topic>Aluminum Silicates - pharmacology</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antimicrobial activity</topic><topic>Bentonite - chemistry</topic><topic>Bentonite - metabolism</topic><topic>Bentonite - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Chemical Phenomena</topic><topic>Clay</topic><topic>Clay (material)</topic><topic>Color</topic><topic>Diffraction</topic><topic>Food industries</topic><topic>Food microbiology</topic><topic>Food Packaging</topic><topic>Food science</topic><topic>Foods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gram-positive bacteria</topic><topic>Listeria monocytogenes - drug effects</topic><topic>Materials elasticity</topic><topic>Mechanical Phenomena</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Scanning</topic><topic>nanocomposite films</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanocomposites - ultrastructure</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>organoclays</topic><topic>Permeability</topic><topic>physical properties</topic><topic>Steam</topic><topic>Surface Properties</topic><topic>Tensile Strength</topic><topic>Water - chemistry</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhim, Jong-Whan</creatorcontrib><creatorcontrib>Lee, Soo-Bin</creatorcontrib><creatorcontrib>Hong, Seok-In</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhim, Jong-Whan</au><au>Lee, Soo-Bin</au><au>Hong, Seok-In</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and Characterization of Agar/Clay Nanocomposite Films: The Effect of Clay Type</atitle><jtitle>Journal of food science</jtitle><addtitle>J Food Sci</addtitle><date>2011-04</date><risdate>2011</risdate><volume>76</volume><issue>3</issue><spage>N40</spage><epage>N48</epage><pages>N40-N48</pages><issn>0022-1147</issn><eissn>1750-3841</eissn><coden>JFDSAZ</coden><abstract>: Agar‐based nanocomposite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B, and Cloisite 20A, were prepared using a solvent casting method, and their tensile, water vapor barrier, and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of control agar film were 29.7 ± 1.7 MPa, 45.3 ± 9.6%, and (2.22 ± 0.19) × 10−9 g·m/m2·s·Pa, respectively. All the film properties tested, including transmittance, tensile properties, WVP, and X‐ray diffraction patterns, indicated that Cloisite Na+ was the most compatible with agar matrix. TS of the nanocomposite films prepared with 5% Cloisite Na+ increased by 18%, while WVP of the nanocomposite films decreased by 24% through nanoclay compounding. Among the agar/clay nanocomposite films tested, only agar/Cloisite 30B nanocomposite film showed a bacteriostatic function against Listeria monocytogenes.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>21535851</pmid><doi>10.1111/j.1750-3841.2011.02049.x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1147 |
ispartof | Journal of food science, 2011-04, Vol.76 (3), p.N40-N48 |
issn | 0022-1147 1750-3841 |
language | eng |
recordid | cdi_proquest_miscellaneous_875032621 |
source | Wiley |
subjects | Agar Agar - chemistry Agar - metabolism Agar - ultrastructure Aluminum Silicates - chemistry Aluminum Silicates - metabolism Aluminum Silicates - pharmacology Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology antimicrobial activity Bentonite - chemistry Bentonite - metabolism Bentonite - pharmacology Biological and medical sciences Chemical Phenomena Clay Clay (material) Color Diffraction Food industries Food microbiology Food Packaging Food science Foods Fundamental and applied biological sciences. Psychology Gram-positive bacteria Listeria monocytogenes - drug effects Materials elasticity Mechanical Phenomena Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure Microscopy, Atomic Force Microscopy, Electron, Scanning nanocomposite films Nanocomposites Nanocomposites - chemistry Nanocomposites - ultrastructure Nanomaterials Nanostructure organoclays Permeability physical properties Steam Surface Properties Tensile Strength Water - chemistry X-Ray Diffraction |
title | Preparation and Characterization of Agar/Clay Nanocomposite Films: The Effect of Clay Type |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20Characterization%20of%20Agar/Clay%20Nanocomposite%20Films:%20The%20Effect%20of%20Clay%20Type&rft.jtitle=Journal%20of%20food%20science&rft.au=Rhim,%20Jong-Whan&rft.date=2011-04&rft.volume=76&rft.issue=3&rft.spage=N40&rft.epage=N48&rft.pages=N40-N48&rft.issn=0022-1147&rft.eissn=1750-3841&rft.coden=JFDSAZ&rft_id=info:doi/10.1111/j.1750-3841.2011.02049.x&rft_dat=%3Cproquest_cross%3E2348228761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866565181&rft_id=info:pmid/21535851&rfr_iscdi=true |