Loading…

Preparation and Characterization of Agar/Clay Nanocomposite Films: The Effect of Clay Type

:  Agar‐based nanocomposite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B, and Cloisite 20A, were prepared using a solvent casting method, and their tensile, water vapor barrier, and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of food science 2011-04, Vol.76 (3), p.N40-N48
Main Authors: Rhim, Jong-Whan, Lee, Soo-Bin, Hong, Seok-In
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123
cites cdi_FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123
container_end_page N48
container_issue 3
container_start_page N40
container_title Journal of food science
container_volume 76
creator Rhim, Jong-Whan
Lee, Soo-Bin
Hong, Seok-In
description :  Agar‐based nanocomposite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B, and Cloisite 20A, were prepared using a solvent casting method, and their tensile, water vapor barrier, and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of control agar film were 29.7 ± 1.7 MPa, 45.3 ± 9.6%, and (2.22 ± 0.19) × 10−9 g·m/m2·s·Pa, respectively. All the film properties tested, including transmittance, tensile properties, WVP, and X‐ray diffraction patterns, indicated that Cloisite Na+ was the most compatible with agar matrix. TS of the nanocomposite films prepared with 5% Cloisite Na+ increased by 18%, while WVP of the nanocomposite films decreased by 24% through nanoclay compounding. Among the agar/clay nanocomposite films tested, only agar/Cloisite 30B nanocomposite film showed a bacteriostatic function against Listeria monocytogenes.
doi_str_mv 10.1111/j.1750-3841.2011.02049.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875032621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348228761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoModq3-BRkE8Wqm-Z6MF0IZu1Upa6ErgjchZs7YrPPVZBZ3_fVmOusK3mhukpM85yHJi1BCcEbiONtkJBc4ZYqTjGJCMkwxL7LdA7Q4HjxEC4wpTQnh-Ql6EsIGTzWTj9EJJYIJJcgCfbn2MBhvRtd3iemqpLyNlR3Bu5_zZl8n59-MPysbs09Wputt3w59cCMkS9e04XWyvoXkoq7BjhN8z633AzxFj2rTBHh2mE_Rp-XFunyXXn28fF-eX6WWF7JIC2NkxYRkFcW5rSUURlqLMRQUA82lAEUAKkFsrQTmObO2MLngvOYVwYSyU_Rq9g6-v9tCGHXrgoWmMR3026BV_BFGJSX_JiXPlSRMRPLFX-Sm3_ouPiNCUkhB1KRTM2R9H4KHWg_etcbvNcF6yklv9BSHnuLQU076Pie9i63PD_7t1xaqY-PvYCLw8gCYYE1Te9NZF_5wHCuJlYrcm5n74RrY__cF9Ifl25tpGQXpLHBhhN1RYPx3LXOWC_15danLm3VxvSJcr9gvuJS68g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866565181</pqid></control><display><type>article</type><title>Preparation and Characterization of Agar/Clay Nanocomposite Films: The Effect of Clay Type</title><source>Wiley</source><creator>Rhim, Jong-Whan ; Lee, Soo-Bin ; Hong, Seok-In</creator><creatorcontrib>Rhim, Jong-Whan ; Lee, Soo-Bin ; Hong, Seok-In</creatorcontrib><description>:  Agar‐based nanocomposite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B, and Cloisite 20A, were prepared using a solvent casting method, and their tensile, water vapor barrier, and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of control agar film were 29.7 ± 1.7 MPa, 45.3 ± 9.6%, and (2.22 ± 0.19) × 10−9 g·m/m2·s·Pa, respectively. All the film properties tested, including transmittance, tensile properties, WVP, and X‐ray diffraction patterns, indicated that Cloisite Na+ was the most compatible with agar matrix. TS of the nanocomposite films prepared with 5% Cloisite Na+ increased by 18%, while WVP of the nanocomposite films decreased by 24% through nanoclay compounding. Among the agar/clay nanocomposite films tested, only agar/Cloisite 30B nanocomposite film showed a bacteriostatic function against Listeria monocytogenes.</description><identifier>ISSN: 0022-1147</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/j.1750-3841.2011.02049.x</identifier><identifier>PMID: 21535851</identifier><identifier>CODEN: JFDSAZ</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Agar ; Agar - chemistry ; Agar - metabolism ; Agar - ultrastructure ; Aluminum Silicates - chemistry ; Aluminum Silicates - metabolism ; Aluminum Silicates - pharmacology ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; antimicrobial activity ; Bentonite - chemistry ; Bentonite - metabolism ; Bentonite - pharmacology ; Biological and medical sciences ; Chemical Phenomena ; Clay ; Clay (material) ; Color ; Diffraction ; Food industries ; Food microbiology ; Food Packaging ; Food science ; Foods ; Fundamental and applied biological sciences. Psychology ; Gram-positive bacteria ; Listeria monocytogenes - drug effects ; Materials elasticity ; Mechanical Phenomena ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Microscopy, Atomic Force ; Microscopy, Electron, Scanning ; nanocomposite films ; Nanocomposites ; Nanocomposites - chemistry ; Nanocomposites - ultrastructure ; Nanomaterials ; Nanostructure ; organoclays ; Permeability ; physical properties ; Steam ; Surface Properties ; Tensile Strength ; Water - chemistry ; X-Ray Diffraction</subject><ispartof>Journal of food science, 2011-04, Vol.76 (3), p.N40-N48</ispartof><rights>2011 Institute of Food Technologists</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Institute of Food Technologists Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123</citedby><cites>FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24086088$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21535851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rhim, Jong-Whan</creatorcontrib><creatorcontrib>Lee, Soo-Bin</creatorcontrib><creatorcontrib>Hong, Seok-In</creatorcontrib><title>Preparation and Characterization of Agar/Clay Nanocomposite Films: The Effect of Clay Type</title><title>Journal of food science</title><addtitle>J Food Sci</addtitle><description>:  Agar‐based nanocomposite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B, and Cloisite 20A, were prepared using a solvent casting method, and their tensile, water vapor barrier, and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of control agar film were 29.7 ± 1.7 MPa, 45.3 ± 9.6%, and (2.22 ± 0.19) × 10−9 g·m/m2·s·Pa, respectively. All the film properties tested, including transmittance, tensile properties, WVP, and X‐ray diffraction patterns, indicated that Cloisite Na+ was the most compatible with agar matrix. TS of the nanocomposite films prepared with 5% Cloisite Na+ increased by 18%, while WVP of the nanocomposite films decreased by 24% through nanoclay compounding. Among the agar/clay nanocomposite films tested, only agar/Cloisite 30B nanocomposite film showed a bacteriostatic function against Listeria monocytogenes.</description><subject>Agar</subject><subject>Agar - chemistry</subject><subject>Agar - metabolism</subject><subject>Agar - ultrastructure</subject><subject>Aluminum Silicates - chemistry</subject><subject>Aluminum Silicates - metabolism</subject><subject>Aluminum Silicates - pharmacology</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antimicrobial activity</subject><subject>Bentonite - chemistry</subject><subject>Bentonite - metabolism</subject><subject>Bentonite - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Chemical Phenomena</subject><subject>Clay</subject><subject>Clay (material)</subject><subject>Color</subject><subject>Diffraction</subject><subject>Food industries</subject><subject>Food microbiology</subject><subject>Food Packaging</subject><subject>Food science</subject><subject>Foods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gram-positive bacteria</subject><subject>Listeria monocytogenes - drug effects</subject><subject>Materials elasticity</subject><subject>Mechanical Phenomena</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Scanning</subject><subject>nanocomposite films</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanocomposites - ultrastructure</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>organoclays</subject><subject>Permeability</subject><subject>physical properties</subject><subject>Steam</subject><subject>Surface Properties</subject><subject>Tensile Strength</subject><subject>Water - chemistry</subject><subject>X-Ray Diffraction</subject><issn>0022-1147</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkV1rFDEUhoModq3-BRkE8Wqm-Z6MF0IZu1Upa6ErgjchZs7YrPPVZBZ3_fVmOusK3mhukpM85yHJi1BCcEbiONtkJBc4ZYqTjGJCMkwxL7LdA7Q4HjxEC4wpTQnh-Ql6EsIGTzWTj9EJJYIJJcgCfbn2MBhvRtd3iemqpLyNlR3Bu5_zZl8n59-MPysbs09Wputt3w59cCMkS9e04XWyvoXkoq7BjhN8z633AzxFj2rTBHh2mE_Rp-XFunyXXn28fF-eX6WWF7JIC2NkxYRkFcW5rSUURlqLMRQUA82lAEUAKkFsrQTmObO2MLngvOYVwYSyU_Rq9g6-v9tCGHXrgoWmMR3026BV_BFGJSX_JiXPlSRMRPLFX-Sm3_ouPiNCUkhB1KRTM2R9H4KHWg_etcbvNcF6yklv9BSHnuLQU076Pie9i63PD_7t1xaqY-PvYCLw8gCYYE1Te9NZF_5wHCuJlYrcm5n74RrY__cF9Ifl25tpGQXpLHBhhN1RYPx3LXOWC_15danLm3VxvSJcr9gvuJS68g</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Rhim, Jong-Whan</creator><creator>Lee, Soo-Bin</creator><creator>Hong, Seok-In</creator><general>Blackwell Publishing Inc</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201104</creationdate><title>Preparation and Characterization of Agar/Clay Nanocomposite Films: The Effect of Clay Type</title><author>Rhim, Jong-Whan ; Lee, Soo-Bin ; Hong, Seok-In</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agar</topic><topic>Agar - chemistry</topic><topic>Agar - metabolism</topic><topic>Agar - ultrastructure</topic><topic>Aluminum Silicates - chemistry</topic><topic>Aluminum Silicates - metabolism</topic><topic>Aluminum Silicates - pharmacology</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antimicrobial activity</topic><topic>Bentonite - chemistry</topic><topic>Bentonite - metabolism</topic><topic>Bentonite - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Chemical Phenomena</topic><topic>Clay</topic><topic>Clay (material)</topic><topic>Color</topic><topic>Diffraction</topic><topic>Food industries</topic><topic>Food microbiology</topic><topic>Food Packaging</topic><topic>Food science</topic><topic>Foods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gram-positive bacteria</topic><topic>Listeria monocytogenes - drug effects</topic><topic>Materials elasticity</topic><topic>Mechanical Phenomena</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Scanning</topic><topic>nanocomposite films</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanocomposites - ultrastructure</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>organoclays</topic><topic>Permeability</topic><topic>physical properties</topic><topic>Steam</topic><topic>Surface Properties</topic><topic>Tensile Strength</topic><topic>Water - chemistry</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhim, Jong-Whan</creatorcontrib><creatorcontrib>Lee, Soo-Bin</creatorcontrib><creatorcontrib>Hong, Seok-In</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhim, Jong-Whan</au><au>Lee, Soo-Bin</au><au>Hong, Seok-In</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and Characterization of Agar/Clay Nanocomposite Films: The Effect of Clay Type</atitle><jtitle>Journal of food science</jtitle><addtitle>J Food Sci</addtitle><date>2011-04</date><risdate>2011</risdate><volume>76</volume><issue>3</issue><spage>N40</spage><epage>N48</epage><pages>N40-N48</pages><issn>0022-1147</issn><eissn>1750-3841</eissn><coden>JFDSAZ</coden><abstract>:  Agar‐based nanocomposite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B, and Cloisite 20A, were prepared using a solvent casting method, and their tensile, water vapor barrier, and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of control agar film were 29.7 ± 1.7 MPa, 45.3 ± 9.6%, and (2.22 ± 0.19) × 10−9 g·m/m2·s·Pa, respectively. All the film properties tested, including transmittance, tensile properties, WVP, and X‐ray diffraction patterns, indicated that Cloisite Na+ was the most compatible with agar matrix. TS of the nanocomposite films prepared with 5% Cloisite Na+ increased by 18%, while WVP of the nanocomposite films decreased by 24% through nanoclay compounding. Among the agar/clay nanocomposite films tested, only agar/Cloisite 30B nanocomposite film showed a bacteriostatic function against Listeria monocytogenes.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>21535851</pmid><doi>10.1111/j.1750-3841.2011.02049.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1147
ispartof Journal of food science, 2011-04, Vol.76 (3), p.N40-N48
issn 0022-1147
1750-3841
language eng
recordid cdi_proquest_miscellaneous_875032621
source Wiley
subjects Agar
Agar - chemistry
Agar - metabolism
Agar - ultrastructure
Aluminum Silicates - chemistry
Aluminum Silicates - metabolism
Aluminum Silicates - pharmacology
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
antimicrobial activity
Bentonite - chemistry
Bentonite - metabolism
Bentonite - pharmacology
Biological and medical sciences
Chemical Phenomena
Clay
Clay (material)
Color
Diffraction
Food industries
Food microbiology
Food Packaging
Food science
Foods
Fundamental and applied biological sciences. Psychology
Gram-positive bacteria
Listeria monocytogenes - drug effects
Materials elasticity
Mechanical Phenomena
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Microscopy, Atomic Force
Microscopy, Electron, Scanning
nanocomposite films
Nanocomposites
Nanocomposites - chemistry
Nanocomposites - ultrastructure
Nanomaterials
Nanostructure
organoclays
Permeability
physical properties
Steam
Surface Properties
Tensile Strength
Water - chemistry
X-Ray Diffraction
title Preparation and Characterization of Agar/Clay Nanocomposite Films: The Effect of Clay Type
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20Characterization%20of%20Agar/Clay%20Nanocomposite%20Films:%20The%20Effect%20of%20Clay%20Type&rft.jtitle=Journal%20of%20food%20science&rft.au=Rhim,%20Jong-Whan&rft.date=2011-04&rft.volume=76&rft.issue=3&rft.spage=N40&rft.epage=N48&rft.pages=N40-N48&rft.issn=0022-1147&rft.eissn=1750-3841&rft.coden=JFDSAZ&rft_id=info:doi/10.1111/j.1750-3841.2011.02049.x&rft_dat=%3Cproquest_cross%3E2348228761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4969-9aa6d3563d207cf6e9a6cc00e920e2765e81eed51cf850473cc9a7544f4d10123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866565181&rft_id=info:pmid/21535851&rfr_iscdi=true