Loading…
Real-Time Reconfigurable Subthreshold CMOS Perceptron
In this paper, a new, real-time reconfigurable perceptron circuit element is presented. A six-transistor version used as a threshold gate, having a fan-in of three, producing adequate outputs for threshold of T = 1,2 and 3 is demonstrated by chip measurements. Subthreshold operation for supply volta...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2008-04, Vol.19 (4), p.645-657 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a new, real-time reconfigurable perceptron circuit element is presented. A six-transistor version used as a threshold gate, having a fan-in of three, producing adequate outputs for threshold of T = 1,2 and 3 is demonstrated by chip measurements. Subthreshold operation for supply voltages in the range of 100-350 mV is shown. The circuit performs competitively with a standard static complimentary metal-oxide-semiconductor (CMOS) implementation when maximum speed and energy delay product are taken into account, when used in a ring oscillator. Functionality per transistor is, to our knowledge, the highest reported for a variety of comparable circuits not based on floating gate techniques. Statistical simulations predict probabilities for making working circuits under mismatch and process variations. The simulations, in 120-nm CMOS, also support discussions regarding lower limits to supply voltage and redundancy. A brief discussion on how the circuit may be exploited as a basic building block for future defect tolerant mixed signal circuits, as well as neural networks, exploiting redundancy, is included. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2007.912572 |