Loading…

Riccati Equation and EM Algorithm Convergence for Inertial Navigation Alignment

This correspondence investigates the convergence of a Kalman filter-based expectation-maximization (EM) algorithm for estimating variances. It is shown that if the variance estimates and the error covariances are initialized appropriately, the underlying Riccati equation solution and the sequence of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2009-01, Vol.57 (1), p.370-375
Main Authors: Einicke, G.A., Malos, J.T., Reid, D.C., Hainsworth, D.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-1813e3e7c518b3dfa256ea0d519eeb309b151b59f3958aec18466769e2943a3a3
cites cdi_FETCH-LOGICAL-c383t-1813e3e7c518b3dfa256ea0d519eeb309b151b59f3958aec18466769e2943a3a3
container_end_page 375
container_issue 1
container_start_page 370
container_title IEEE transactions on signal processing
container_volume 57
creator Einicke, G.A.
Malos, J.T.
Reid, D.C.
Hainsworth, D.W.
description This correspondence investigates the convergence of a Kalman filter-based expectation-maximization (EM) algorithm for estimating variances. It is shown that if the variance estimates and the error covariances are initialized appropriately, the underlying Riccati equation solution and the sequence of iterations will be monotonically nonincreasing. Further, the process noise variance estimates converge to the actual values when the measurement noise becomes negligibly small. Conversely, when the process noise variance becomes negligible, the measurement noise variance estimates asymptotically approach the true values. An inertial navigation application is discussed in which performance depends on accurately estimating the process variances.
doi_str_mv 10.1109/TSP.2008.2007090
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875040392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663891</ieee_id><sourcerecordid>34911334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-1813e3e7c518b3dfa256ea0d519eeb309b151b59f3958aec18466769e2943a3a3</originalsourceid><addsrcrecordid>eNp9kctLAzEQxhdR8HkXvCyCelqd2SS7ybGU-gBf-ABvIU1na2Sb1WQr-N-b2uLBgwzMDMzv-2D4smwf4RQR1NnT4_1pCSAXrQYFa9kWKo4F8LpaTzsIVghZv2xm2zG-ASDnqtrK7h6ctaZ3-ehjnkbnc-Mn-egmH7TTLrj-dZYPO_9JYUreUt50Ib_yFHpn2vzWfLrpUjRo3dTPyPe72UZj2kh7q7mTPZ-PnoaXxfXdxdVwcF1YJllfoERGjGorUI7ZpDGlqMjARKAiGjNQYxQ4FqphSkhDFiWvqrpSVCrOTKqd7GTp-x66jznFXs9ctNS2xlM3j1rWAjgwVSby-F-ScYXIGE_g4R_wrZsHn77QskpIWUKVIFhCNnQxBmr0e3AzE740gl4EoVMQehGEXgWRJEcrXxOtaZtgvHXxV1cilCB_rA-WnCOi33P6m0mF7Bunho9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861132206</pqid></control><display><type>article</type><title>Riccati Equation and EM Algorithm Convergence for Inertial Navigation Alignment</title><source>IEEE Xplore (Online service)</source><creator>Einicke, G.A. ; Malos, J.T. ; Reid, D.C. ; Hainsworth, D.W.</creator><creatorcontrib>Einicke, G.A. ; Malos, J.T. ; Reid, D.C. ; Hainsworth, D.W.</creatorcontrib><description>This correspondence investigates the convergence of a Kalman filter-based expectation-maximization (EM) algorithm for estimating variances. It is shown that if the variance estimates and the error covariances are initialized appropriately, the underlying Riccati equation solution and the sequence of iterations will be monotonically nonincreasing. Further, the process noise variance estimates converge to the actual values when the measurement noise becomes negligibly small. Conversely, when the process noise variance becomes negligible, the measurement noise variance estimates asymptotically approach the true values. An inertial navigation application is discussed in which performance depends on accurately estimating the process variances.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.2007090</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Asymptotic properties ; Convergence ; Detection, estimation, filtering, equalization, prediction ; Estimates ; Exact sciences and technology ; Filtering ; Inertial navigation ; Information, signal and communications theory ; Iterative algorithms ; Kalman filtering ; Kalman filters ; Miscellaneous ; Noise ; Noise measurement ; Parameter estimation ; Riccati equation ; Riccati equations ; Signal and communications theory ; Signal processing ; Signal, noise ; State estimation ; stationary alignment ; Telecommunications and information theory ; Trajectory ; Variance</subject><ispartof>IEEE transactions on signal processing, 2009-01, Vol.57 (1), p.370-375</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-1813e3e7c518b3dfa256ea0d519eeb309b151b59f3958aec18466769e2943a3a3</citedby><cites>FETCH-LOGICAL-c383t-1813e3e7c518b3dfa256ea0d519eeb309b151b59f3958aec18466769e2943a3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663891$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21020806$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Einicke, G.A.</creatorcontrib><creatorcontrib>Malos, J.T.</creatorcontrib><creatorcontrib>Reid, D.C.</creatorcontrib><creatorcontrib>Hainsworth, D.W.</creatorcontrib><title>Riccati Equation and EM Algorithm Convergence for Inertial Navigation Alignment</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This correspondence investigates the convergence of a Kalman filter-based expectation-maximization (EM) algorithm for estimating variances. It is shown that if the variance estimates and the error covariances are initialized appropriately, the underlying Riccati equation solution and the sequence of iterations will be monotonically nonincreasing. Further, the process noise variance estimates converge to the actual values when the measurement noise becomes negligibly small. Conversely, when the process noise variance becomes negligible, the measurement noise variance estimates asymptotically approach the true values. An inertial navigation application is discussed in which performance depends on accurately estimating the process variances.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Inertial navigation</subject><subject>Information, signal and communications theory</subject><subject>Iterative algorithms</subject><subject>Kalman filtering</subject><subject>Kalman filters</subject><subject>Miscellaneous</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Parameter estimation</subject><subject>Riccati equation</subject><subject>Riccati equations</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>State estimation</subject><subject>stationary alignment</subject><subject>Telecommunications and information theory</subject><subject>Trajectory</subject><subject>Variance</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kctLAzEQxhdR8HkXvCyCelqd2SS7ybGU-gBf-ABvIU1na2Sb1WQr-N-b2uLBgwzMDMzv-2D4smwf4RQR1NnT4_1pCSAXrQYFa9kWKo4F8LpaTzsIVghZv2xm2zG-ASDnqtrK7h6ctaZ3-ehjnkbnc-Mn-egmH7TTLrj-dZYPO_9JYUreUt50Ib_yFHpn2vzWfLrpUjRo3dTPyPe72UZj2kh7q7mTPZ-PnoaXxfXdxdVwcF1YJllfoERGjGorUI7ZpDGlqMjARKAiGjNQYxQ4FqphSkhDFiWvqrpSVCrOTKqd7GTp-x66jznFXs9ctNS2xlM3j1rWAjgwVSby-F-ScYXIGE_g4R_wrZsHn77QskpIWUKVIFhCNnQxBmr0e3AzE740gl4EoVMQehGEXgWRJEcrXxOtaZtgvHXxV1cilCB_rA-WnCOi33P6m0mF7Bunho9I</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Einicke, G.A.</creator><creator>Malos, J.T.</creator><creator>Reid, D.C.</creator><creator>Hainsworth, D.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200901</creationdate><title>Riccati Equation and EM Algorithm Convergence for Inertial Navigation Alignment</title><author>Einicke, G.A. ; Malos, J.T. ; Reid, D.C. ; Hainsworth, D.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-1813e3e7c518b3dfa256ea0d519eeb309b151b59f3958aec18466769e2943a3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Inertial navigation</topic><topic>Information, signal and communications theory</topic><topic>Iterative algorithms</topic><topic>Kalman filtering</topic><topic>Kalman filters</topic><topic>Miscellaneous</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Parameter estimation</topic><topic>Riccati equation</topic><topic>Riccati equations</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>State estimation</topic><topic>stationary alignment</topic><topic>Telecommunications and information theory</topic><topic>Trajectory</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Einicke, G.A.</creatorcontrib><creatorcontrib>Malos, J.T.</creatorcontrib><creatorcontrib>Reid, D.C.</creatorcontrib><creatorcontrib>Hainsworth, D.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Einicke, G.A.</au><au>Malos, J.T.</au><au>Reid, D.C.</au><au>Hainsworth, D.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riccati Equation and EM Algorithm Convergence for Inertial Navigation Alignment</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-01</date><risdate>2009</risdate><volume>57</volume><issue>1</issue><spage>370</spage><epage>375</epage><pages>370-375</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This correspondence investigates the convergence of a Kalman filter-based expectation-maximization (EM) algorithm for estimating variances. It is shown that if the variance estimates and the error covariances are initialized appropriately, the underlying Riccati equation solution and the sequence of iterations will be monotonically nonincreasing. Further, the process noise variance estimates converge to the actual values when the measurement noise becomes negligibly small. Conversely, when the process noise variance becomes negligible, the measurement noise variance estimates asymptotically approach the true values. An inertial navigation application is discussed in which performance depends on accurately estimating the process variances.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.2007090</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2009-01, Vol.57 (1), p.370-375
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_875040392
source IEEE Xplore (Online service)
subjects Algorithms
Applied sciences
Asymptotic properties
Convergence
Detection, estimation, filtering, equalization, prediction
Estimates
Exact sciences and technology
Filtering
Inertial navigation
Information, signal and communications theory
Iterative algorithms
Kalman filtering
Kalman filters
Miscellaneous
Noise
Noise measurement
Parameter estimation
Riccati equation
Riccati equations
Signal and communications theory
Signal processing
Signal, noise
State estimation
stationary alignment
Telecommunications and information theory
Trajectory
Variance
title Riccati Equation and EM Algorithm Convergence for Inertial Navigation Alignment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riccati%20Equation%20and%20EM%20Algorithm%20Convergence%20for%20Inertial%20Navigation%20Alignment&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Einicke,%20G.A.&rft.date=2009-01&rft.volume=57&rft.issue=1&rft.spage=370&rft.epage=375&rft.pages=370-375&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.2007090&rft_dat=%3Cproquest_cross%3E34911334%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-1813e3e7c518b3dfa256ea0d519eeb309b151b59f3958aec18466769e2943a3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861132206&rft_id=info:pmid/&rft_ieee_id=4663891&rfr_iscdi=true