Loading…
Overcomplete Discrete Wavelet Transforms With Rational Dilation Factors
This paper develops an overcomplete discrete wavelet transform (DWT) based on rational dilation factors for discrete-time signals. The proposed overcomplete rational DWT is implemented using self-inverting FIR filter banks, is approximately shift-invariant, and can provide a dense sampling of the ti...
Saved in:
Published in: | IEEE transactions on signal processing 2009-01, Vol.57 (1), p.131-145 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3 |
container_end_page | 145 |
container_issue | 1 |
container_start_page | 131 |
container_title | IEEE transactions on signal processing |
container_volume | 57 |
creator | Bayram, I. Selesnick, I.W. |
description | This paper develops an overcomplete discrete wavelet transform (DWT) based on rational dilation factors for discrete-time signals. The proposed overcomplete rational DWT is implemented using self-inverting FIR filter banks, is approximately shift-invariant, and can provide a dense sampling of the time-frequency plane. A straightforward algorithm is described for the construction of minimal-length perfect reconstruction filters with a specified number of vanishing moments; whereas, in the nonredundant rational case, no such algorithm is available. The algorithm is based on matrix spectral factorization. The analysis/synthesis functions (discrete-time wavelets) can be very smooth and can be designed to closely approximate the derivatives of the Gaussian function. |
doi_str_mv | 10.1109/TSP.2008.2007097 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_875040408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663893</ieee_id><sourcerecordid>34955179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3</originalsourceid><addsrcrecordid>eNp9kd1LwzAUxYsoOKfvgi9FUJ8689V8PMp0UxhMdDLfSpreYEe7zqQb-N-bbmMPPkggOeT-7iG5J4ouMRpgjNT97P11QBCS3SaQEkdRDyuGE8QEPw4apTRJpfg8jc68XyCEGVO8F42nG3CmqVcVtBA_lt64Tsz1BsJNPHN66W3jah_Py_YrftNt2Sx1FchqK-ORNm3j_Hl0YnXl4WJ_9qOP0dNs-JxMpuOX4cMkMVTSNlEIKJGssIwoqjQxSFrGTWE5LxQITGzBsAUgucCgNYBIudWCC0o0yfOc9qO7ne_KNd9r8G1WhzdDVeklNGufSZEiFpYM5O2_JGUqTbFQAbz-Ay6atQufDG4cY0rI1g3tIOMa7x3YbOXKWrufDKOsCyALAWRdANk-gNBys_fV3ujKhlGa0h_6CEYECdlxVzuuBIBDmXFOpaL0F7VJjkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861132208</pqid></control><display><type>article</type><title>Overcomplete Discrete Wavelet Transforms With Rational Dilation Factors</title><source>IEEE Xplore (Online service)</source><creator>Bayram, I. ; Selesnick, I.W.</creator><creatorcontrib>Bayram, I. ; Selesnick, I.W.</creatorcontrib><description>This paper develops an overcomplete discrete wavelet transform (DWT) based on rational dilation factors for discrete-time signals. The proposed overcomplete rational DWT is implemented using self-inverting FIR filter banks, is approximately shift-invariant, and can provide a dense sampling of the time-frequency plane. A straightforward algorithm is described for the construction of minimal-length perfect reconstruction filters with a specified number of vanishing moments; whereas, in the nonredundant rational case, no such algorithm is available. The algorithm is based on matrix spectral factorization. The analysis/synthesis functions (discrete-time wavelets) can be very smooth and can be designed to closely approximate the derivatives of the Gaussian function.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.2007097</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Derivatives ; Detection, estimation, filtering, equalization, prediction ; Dilation ; Discrete Wavelet Transform ; Discrete wavelet transforms ; Exact sciences and technology ; Factorization ; Filter bank ; Finite impulse response filter ; frame ; Gaussian ; Information, signal and communications theory ; matrix spectral factorization ; Miscellaneous ; Multiresolution analysis ; rational dilation factor ; Sampling methods ; Sampling, quantization ; Signal and communications theory ; Signal processing ; Signal processing algorithms ; Signal resolution ; Signal synthesis ; Signal, noise ; Spectra ; Telecommunications and information theory ; Time frequency analysis ; Wavelet analysis ; wavelet transforms</subject><ispartof>IEEE transactions on signal processing, 2009-01, Vol.57 (1), p.131-145</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3</citedby><cites>FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663893$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,4010,27904,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21020787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayram, I.</creatorcontrib><creatorcontrib>Selesnick, I.W.</creatorcontrib><title>Overcomplete Discrete Wavelet Transforms With Rational Dilation Factors</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper develops an overcomplete discrete wavelet transform (DWT) based on rational dilation factors for discrete-time signals. The proposed overcomplete rational DWT is implemented using self-inverting FIR filter banks, is approximately shift-invariant, and can provide a dense sampling of the time-frequency plane. A straightforward algorithm is described for the construction of minimal-length perfect reconstruction filters with a specified number of vanishing moments; whereas, in the nonredundant rational case, no such algorithm is available. The algorithm is based on matrix spectral factorization. The analysis/synthesis functions (discrete-time wavelets) can be very smooth and can be designed to closely approximate the derivatives of the Gaussian function.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Derivatives</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Dilation</subject><subject>Discrete Wavelet Transform</subject><subject>Discrete wavelet transforms</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Filter bank</subject><subject>Finite impulse response filter</subject><subject>frame</subject><subject>Gaussian</subject><subject>Information, signal and communications theory</subject><subject>matrix spectral factorization</subject><subject>Miscellaneous</subject><subject>Multiresolution analysis</subject><subject>rational dilation factor</subject><subject>Sampling methods</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signal resolution</subject><subject>Signal synthesis</subject><subject>Signal, noise</subject><subject>Spectra</subject><subject>Telecommunications and information theory</subject><subject>Time frequency analysis</subject><subject>Wavelet analysis</subject><subject>wavelet transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kd1LwzAUxYsoOKfvgi9FUJ8689V8PMp0UxhMdDLfSpreYEe7zqQb-N-bbmMPPkggOeT-7iG5J4ouMRpgjNT97P11QBCS3SaQEkdRDyuGE8QEPw4apTRJpfg8jc68XyCEGVO8F42nG3CmqVcVtBA_lt64Tsz1BsJNPHN66W3jah_Py_YrftNt2Sx1FchqK-ORNm3j_Hl0YnXl4WJ_9qOP0dNs-JxMpuOX4cMkMVTSNlEIKJGssIwoqjQxSFrGTWE5LxQITGzBsAUgucCgNYBIudWCC0o0yfOc9qO7ne_KNd9r8G1WhzdDVeklNGufSZEiFpYM5O2_JGUqTbFQAbz-Ay6atQufDG4cY0rI1g3tIOMa7x3YbOXKWrufDKOsCyALAWRdANk-gNBys_fV3ujKhlGa0h_6CEYECdlxVzuuBIBDmXFOpaL0F7VJjkY</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Bayram, I.</creator><creator>Selesnick, I.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200901</creationdate><title>Overcomplete Discrete Wavelet Transforms With Rational Dilation Factors</title><author>Bayram, I. ; Selesnick, I.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Derivatives</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Dilation</topic><topic>Discrete Wavelet Transform</topic><topic>Discrete wavelet transforms</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Filter bank</topic><topic>Finite impulse response filter</topic><topic>frame</topic><topic>Gaussian</topic><topic>Information, signal and communications theory</topic><topic>matrix spectral factorization</topic><topic>Miscellaneous</topic><topic>Multiresolution analysis</topic><topic>rational dilation factor</topic><topic>Sampling methods</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signal resolution</topic><topic>Signal synthesis</topic><topic>Signal, noise</topic><topic>Spectra</topic><topic>Telecommunications and information theory</topic><topic>Time frequency analysis</topic><topic>Wavelet analysis</topic><topic>wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayram, I.</creatorcontrib><creatorcontrib>Selesnick, I.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayram, I.</au><au>Selesnick, I.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcomplete Discrete Wavelet Transforms With Rational Dilation Factors</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-01</date><risdate>2009</risdate><volume>57</volume><issue>1</issue><spage>131</spage><epage>145</epage><pages>131-145</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper develops an overcomplete discrete wavelet transform (DWT) based on rational dilation factors for discrete-time signals. The proposed overcomplete rational DWT is implemented using self-inverting FIR filter banks, is approximately shift-invariant, and can provide a dense sampling of the time-frequency plane. A straightforward algorithm is described for the construction of minimal-length perfect reconstruction filters with a specified number of vanishing moments; whereas, in the nonredundant rational case, no such algorithm is available. The algorithm is based on matrix spectral factorization. The analysis/synthesis functions (discrete-time wavelets) can be very smooth and can be designed to closely approximate the derivatives of the Gaussian function.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.2007097</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2009-01, Vol.57 (1), p.131-145 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_875040408 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Applied sciences Approximation Derivatives Detection, estimation, filtering, equalization, prediction Dilation Discrete Wavelet Transform Discrete wavelet transforms Exact sciences and technology Factorization Filter bank Finite impulse response filter frame Gaussian Information, signal and communications theory matrix spectral factorization Miscellaneous Multiresolution analysis rational dilation factor Sampling methods Sampling, quantization Signal and communications theory Signal processing Signal processing algorithms Signal resolution Signal synthesis Signal, noise Spectra Telecommunications and information theory Time frequency analysis Wavelet analysis wavelet transforms |
title | Overcomplete Discrete Wavelet Transforms With Rational Dilation Factors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcomplete%20Discrete%20Wavelet%20Transforms%20With%20Rational%20Dilation%20Factors&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Bayram,%20I.&rft.date=2009-01&rft.volume=57&rft.issue=1&rft.spage=131&rft.epage=145&rft.pages=131-145&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.2007097&rft_dat=%3Cproquest_ieee_%3E34955179%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861132208&rft_id=info:pmid/&rft_ieee_id=4663893&rfr_iscdi=true |