Loading…

Overcomplete Discrete Wavelet Transforms With Rational Dilation Factors

This paper develops an overcomplete discrete wavelet transform (DWT) based on rational dilation factors for discrete-time signals. The proposed overcomplete rational DWT is implemented using self-inverting FIR filter banks, is approximately shift-invariant, and can provide a dense sampling of the ti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2009-01, Vol.57 (1), p.131-145
Main Authors: Bayram, I., Selesnick, I.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3
cites cdi_FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3
container_end_page 145
container_issue 1
container_start_page 131
container_title IEEE transactions on signal processing
container_volume 57
creator Bayram, I.
Selesnick, I.W.
description This paper develops an overcomplete discrete wavelet transform (DWT) based on rational dilation factors for discrete-time signals. The proposed overcomplete rational DWT is implemented using self-inverting FIR filter banks, is approximately shift-invariant, and can provide a dense sampling of the time-frequency plane. A straightforward algorithm is described for the construction of minimal-length perfect reconstruction filters with a specified number of vanishing moments; whereas, in the nonredundant rational case, no such algorithm is available. The algorithm is based on matrix spectral factorization. The analysis/synthesis functions (discrete-time wavelets) can be very smooth and can be designed to closely approximate the derivatives of the Gaussian function.
doi_str_mv 10.1109/TSP.2008.2007097
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_875040408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663893</ieee_id><sourcerecordid>34955179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3</originalsourceid><addsrcrecordid>eNp9kd1LwzAUxYsoOKfvgi9FUJ8689V8PMp0UxhMdDLfSpreYEe7zqQb-N-bbmMPPkggOeT-7iG5J4ouMRpgjNT97P11QBCS3SaQEkdRDyuGE8QEPw4apTRJpfg8jc68XyCEGVO8F42nG3CmqVcVtBA_lt64Tsz1BsJNPHN66W3jah_Py_YrftNt2Sx1FchqK-ORNm3j_Hl0YnXl4WJ_9qOP0dNs-JxMpuOX4cMkMVTSNlEIKJGssIwoqjQxSFrGTWE5LxQITGzBsAUgucCgNYBIudWCC0o0yfOc9qO7ne_KNd9r8G1WhzdDVeklNGufSZEiFpYM5O2_JGUqTbFQAbz-Ay6atQufDG4cY0rI1g3tIOMa7x3YbOXKWrufDKOsCyALAWRdANk-gNBys_fV3ujKhlGa0h_6CEYECdlxVzuuBIBDmXFOpaL0F7VJjkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861132208</pqid></control><display><type>article</type><title>Overcomplete Discrete Wavelet Transforms With Rational Dilation Factors</title><source>IEEE Xplore (Online service)</source><creator>Bayram, I. ; Selesnick, I.W.</creator><creatorcontrib>Bayram, I. ; Selesnick, I.W.</creatorcontrib><description>This paper develops an overcomplete discrete wavelet transform (DWT) based on rational dilation factors for discrete-time signals. The proposed overcomplete rational DWT is implemented using self-inverting FIR filter banks, is approximately shift-invariant, and can provide a dense sampling of the time-frequency plane. A straightforward algorithm is described for the construction of minimal-length perfect reconstruction filters with a specified number of vanishing moments; whereas, in the nonredundant rational case, no such algorithm is available. The algorithm is based on matrix spectral factorization. The analysis/synthesis functions (discrete-time wavelets) can be very smooth and can be designed to closely approximate the derivatives of the Gaussian function.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.2007097</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Derivatives ; Detection, estimation, filtering, equalization, prediction ; Dilation ; Discrete Wavelet Transform ; Discrete wavelet transforms ; Exact sciences and technology ; Factorization ; Filter bank ; Finite impulse response filter ; frame ; Gaussian ; Information, signal and communications theory ; matrix spectral factorization ; Miscellaneous ; Multiresolution analysis ; rational dilation factor ; Sampling methods ; Sampling, quantization ; Signal and communications theory ; Signal processing ; Signal processing algorithms ; Signal resolution ; Signal synthesis ; Signal, noise ; Spectra ; Telecommunications and information theory ; Time frequency analysis ; Wavelet analysis ; wavelet transforms</subject><ispartof>IEEE transactions on signal processing, 2009-01, Vol.57 (1), p.131-145</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3</citedby><cites>FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663893$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,4010,27904,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21020787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayram, I.</creatorcontrib><creatorcontrib>Selesnick, I.W.</creatorcontrib><title>Overcomplete Discrete Wavelet Transforms With Rational Dilation Factors</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper develops an overcomplete discrete wavelet transform (DWT) based on rational dilation factors for discrete-time signals. The proposed overcomplete rational DWT is implemented using self-inverting FIR filter banks, is approximately shift-invariant, and can provide a dense sampling of the time-frequency plane. A straightforward algorithm is described for the construction of minimal-length perfect reconstruction filters with a specified number of vanishing moments; whereas, in the nonredundant rational case, no such algorithm is available. The algorithm is based on matrix spectral factorization. The analysis/synthesis functions (discrete-time wavelets) can be very smooth and can be designed to closely approximate the derivatives of the Gaussian function.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Derivatives</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Dilation</subject><subject>Discrete Wavelet Transform</subject><subject>Discrete wavelet transforms</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Filter bank</subject><subject>Finite impulse response filter</subject><subject>frame</subject><subject>Gaussian</subject><subject>Information, signal and communications theory</subject><subject>matrix spectral factorization</subject><subject>Miscellaneous</subject><subject>Multiresolution analysis</subject><subject>rational dilation factor</subject><subject>Sampling methods</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signal resolution</subject><subject>Signal synthesis</subject><subject>Signal, noise</subject><subject>Spectra</subject><subject>Telecommunications and information theory</subject><subject>Time frequency analysis</subject><subject>Wavelet analysis</subject><subject>wavelet transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kd1LwzAUxYsoOKfvgi9FUJ8689V8PMp0UxhMdDLfSpreYEe7zqQb-N-bbmMPPkggOeT-7iG5J4ouMRpgjNT97P11QBCS3SaQEkdRDyuGE8QEPw4apTRJpfg8jc68XyCEGVO8F42nG3CmqVcVtBA_lt64Tsz1BsJNPHN66W3jah_Py_YrftNt2Sx1FchqK-ORNm3j_Hl0YnXl4WJ_9qOP0dNs-JxMpuOX4cMkMVTSNlEIKJGssIwoqjQxSFrGTWE5LxQITGzBsAUgucCgNYBIudWCC0o0yfOc9qO7ne_KNd9r8G1WhzdDVeklNGufSZEiFpYM5O2_JGUqTbFQAbz-Ay6atQufDG4cY0rI1g3tIOMa7x3YbOXKWrufDKOsCyALAWRdANk-gNBys_fV3ujKhlGa0h_6CEYECdlxVzuuBIBDmXFOpaL0F7VJjkY</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Bayram, I.</creator><creator>Selesnick, I.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200901</creationdate><title>Overcomplete Discrete Wavelet Transforms With Rational Dilation Factors</title><author>Bayram, I. ; Selesnick, I.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Derivatives</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Dilation</topic><topic>Discrete Wavelet Transform</topic><topic>Discrete wavelet transforms</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Filter bank</topic><topic>Finite impulse response filter</topic><topic>frame</topic><topic>Gaussian</topic><topic>Information, signal and communications theory</topic><topic>matrix spectral factorization</topic><topic>Miscellaneous</topic><topic>Multiresolution analysis</topic><topic>rational dilation factor</topic><topic>Sampling methods</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signal resolution</topic><topic>Signal synthesis</topic><topic>Signal, noise</topic><topic>Spectra</topic><topic>Telecommunications and information theory</topic><topic>Time frequency analysis</topic><topic>Wavelet analysis</topic><topic>wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayram, I.</creatorcontrib><creatorcontrib>Selesnick, I.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayram, I.</au><au>Selesnick, I.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcomplete Discrete Wavelet Transforms With Rational Dilation Factors</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-01</date><risdate>2009</risdate><volume>57</volume><issue>1</issue><spage>131</spage><epage>145</epage><pages>131-145</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper develops an overcomplete discrete wavelet transform (DWT) based on rational dilation factors for discrete-time signals. The proposed overcomplete rational DWT is implemented using self-inverting FIR filter banks, is approximately shift-invariant, and can provide a dense sampling of the time-frequency plane. A straightforward algorithm is described for the construction of minimal-length perfect reconstruction filters with a specified number of vanishing moments; whereas, in the nonredundant rational case, no such algorithm is available. The algorithm is based on matrix spectral factorization. The analysis/synthesis functions (discrete-time wavelets) can be very smooth and can be designed to closely approximate the derivatives of the Gaussian function.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.2007097</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2009-01, Vol.57 (1), p.131-145
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_875040408
source IEEE Xplore (Online service)
subjects Algorithms
Applied sciences
Approximation
Derivatives
Detection, estimation, filtering, equalization, prediction
Dilation
Discrete Wavelet Transform
Discrete wavelet transforms
Exact sciences and technology
Factorization
Filter bank
Finite impulse response filter
frame
Gaussian
Information, signal and communications theory
matrix spectral factorization
Miscellaneous
Multiresolution analysis
rational dilation factor
Sampling methods
Sampling, quantization
Signal and communications theory
Signal processing
Signal processing algorithms
Signal resolution
Signal synthesis
Signal, noise
Spectra
Telecommunications and information theory
Time frequency analysis
Wavelet analysis
wavelet transforms
title Overcomplete Discrete Wavelet Transforms With Rational Dilation Factors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcomplete%20Discrete%20Wavelet%20Transforms%20With%20Rational%20Dilation%20Factors&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Bayram,%20I.&rft.date=2009-01&rft.volume=57&rft.issue=1&rft.spage=131&rft.epage=145&rft.pages=131-145&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.2007097&rft_dat=%3Cproquest_ieee_%3E34955179%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-90e3284df42939a2c08f46cdf66d9e712fd41fee2b71eaaee756fa76732a2bbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861132208&rft_id=info:pmid/&rft_ieee_id=4663893&rfr_iscdi=true