Loading…
Reconstruction of Cellular Biological Structures from Optical Microscopy Data
Developments in optical microscopy imaging have generated large high-resolution data sets that have spurred medical researchers to conduct investigations into mechanisms of disease, including cancer at cellular and subcellular levels. The work reported here demonstrates that a suitable methodology c...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2008-07, Vol.14 (4), p.863-876 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833 |
container_end_page | 876 |
container_issue | 4 |
container_start_page | 863 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 14 |
creator | Mosaliganti, K. Cooper, L. Sharp, R. Machiraju, R. Leone, G. Kun Huang Saltz, J. |
description | Developments in optical microscopy imaging have generated large high-resolution data sets that have spurred medical researchers to conduct investigations into mechanisms of disease, including cancer at cellular and subcellular levels. The work reported here demonstrates that a suitable methodology can be conceived that isolates modality-dependent effects from the larger segmentation task and that 3D reconstructions can be cognizant of shapes as evident in the available 2D planar images. In the current realization, a method based on active geodesic contours is first deployed to counter the ambiguity that exists in separating overlapping cells on the image plane. Later, another segmentation effort based on a variant of Voronoi tessellations improves the delineation of the cell boundaries using a Bayesian formulation. In the next stage, the cells are interpolated across the third dimension thereby mitigating the poor structural correlation that exists in that dimension. We deploy our methods on three separate data sets obtained from light, confocal, and phase-contrast microscopy and validate the results appropriately. |
doi_str_mv | 10.1109/TVCG.2008.30 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_875056521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4445666</ieee_id><sourcerecordid>903639742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833</originalsourceid><addsrcrecordid>eNqF0UlLAzEUB_AgivvNmyCDB7049WWZLEetKyiC2zUkaUZGpk1NZg799qa2KHhQCCS8_Hg83h-hPQwDjEGdPr8OrwcEQA4orKBNrBguoQK-mt8gREk44RtoK6V3AMyYVOtoA0vGheCwie4fvQuT1MXedU2YFKEuhr5t-9bE4rwJbXhrnGmLpy_QR5-KOoZx8TDtvur3jYshuTCdFRemMztorTZt8rvLexu9XF0-D2_Ku4fr2-HZXekYV10pvbWOVAxGI2AMiGV5HkqVq6Wz1nsDvvaCKe4owMhSQ43kTllCiZVSUrqNjhd9pzF89D51etwkl-c2Ex_6pBVQTpVg5F8pRQUVrwjO8uhPyRVW-ZB_IWWskoyJDA9_wffQx0lejJacgKhys4xOFmi-yBR9raexGZs40xj0PGA9D1jPA9YUMj9Y9uzt2I9-8DLRDPYXoPHef3-zPBPnnH4CNYeoQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862075923</pqid></control><display><type>article</type><title>Reconstruction of Cellular Biological Structures from Optical Microscopy Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mosaliganti, K. ; Cooper, L. ; Sharp, R. ; Machiraju, R. ; Leone, G. ; Kun Huang ; Saltz, J.</creator><creatorcontrib>Mosaliganti, K. ; Cooper, L. ; Sharp, R. ; Machiraju, R. ; Leone, G. ; Kun Huang ; Saltz, J.</creatorcontrib><description>Developments in optical microscopy imaging have generated large high-resolution data sets that have spurred medical researchers to conduct investigations into mechanisms of disease, including cancer at cellular and subcellular levels. The work reported here demonstrates that a suitable methodology can be conceived that isolates modality-dependent effects from the larger segmentation task and that 3D reconstructions can be cognizant of shapes as evident in the available 2D planar images. In the current realization, a method based on active geodesic contours is first deployed to counter the ambiguity that exists in separating overlapping cells on the image plane. Later, another segmentation effort based on a variant of Voronoi tessellations improves the delineation of the cell boundaries using a Bayesian formulation. In the next stage, the cells are interpolated across the third dimension thereby mitigating the poor structural correlation that exists in that dimension. We deploy our methods on three separate data sets obtained from light, confocal, and phase-contrast microscopy and validate the results appropriately.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2008.30</identifier><identifier>PMID: 18467760</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biomedical imaging ; Biomedical optical imaging ; Cancer ; Cellular ; Computer Graphics ; Diseases ; High-resolution imaging ; Image Interpretation, Computer-Assisted - methods ; Image Processing and Computer Vision ; Image reconstruction ; Image Representation ; Image segmentation ; Image-based rendering ; Medical ; Microscopy, Confocal - methods ; Optical imaging ; Optical microscopy ; partitioning ; Pattern Recognition, Automated - methods ; Reconstruction ; Region growing ; Segmentation ; Shape ; Size and shape ; Studies ; Subcellular Fractions - ultrastructure ; Three dimensional</subject><ispartof>IEEE transactions on visualization and computer graphics, 2008-07, Vol.14 (4), p.863-876</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833</citedby><cites>FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4445666$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18467760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mosaliganti, K.</creatorcontrib><creatorcontrib>Cooper, L.</creatorcontrib><creatorcontrib>Sharp, R.</creatorcontrib><creatorcontrib>Machiraju, R.</creatorcontrib><creatorcontrib>Leone, G.</creatorcontrib><creatorcontrib>Kun Huang</creatorcontrib><creatorcontrib>Saltz, J.</creatorcontrib><title>Reconstruction of Cellular Biological Structures from Optical Microscopy Data</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Developments in optical microscopy imaging have generated large high-resolution data sets that have spurred medical researchers to conduct investigations into mechanisms of disease, including cancer at cellular and subcellular levels. The work reported here demonstrates that a suitable methodology can be conceived that isolates modality-dependent effects from the larger segmentation task and that 3D reconstructions can be cognizant of shapes as evident in the available 2D planar images. In the current realization, a method based on active geodesic contours is first deployed to counter the ambiguity that exists in separating overlapping cells on the image plane. Later, another segmentation effort based on a variant of Voronoi tessellations improves the delineation of the cell boundaries using a Bayesian formulation. In the next stage, the cells are interpolated across the third dimension thereby mitigating the poor structural correlation that exists in that dimension. We deploy our methods on three separate data sets obtained from light, confocal, and phase-contrast microscopy and validate the results appropriately.</description><subject>Biomedical imaging</subject><subject>Biomedical optical imaging</subject><subject>Cancer</subject><subject>Cellular</subject><subject>Computer Graphics</subject><subject>Diseases</subject><subject>High-resolution imaging</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing and Computer Vision</subject><subject>Image reconstruction</subject><subject>Image Representation</subject><subject>Image segmentation</subject><subject>Image-based rendering</subject><subject>Medical</subject><subject>Microscopy, Confocal - methods</subject><subject>Optical imaging</subject><subject>Optical microscopy</subject><subject>partitioning</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reconstruction</subject><subject>Region growing</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Size and shape</subject><subject>Studies</subject><subject>Subcellular Fractions - ultrastructure</subject><subject>Three dimensional</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0UlLAzEUB_AgivvNmyCDB7049WWZLEetKyiC2zUkaUZGpk1NZg799qa2KHhQCCS8_Hg83h-hPQwDjEGdPr8OrwcEQA4orKBNrBguoQK-mt8gREk44RtoK6V3AMyYVOtoA0vGheCwie4fvQuT1MXedU2YFKEuhr5t-9bE4rwJbXhrnGmLpy_QR5-KOoZx8TDtvur3jYshuTCdFRemMztorTZt8rvLexu9XF0-D2_Ku4fr2-HZXekYV10pvbWOVAxGI2AMiGV5HkqVq6Wz1nsDvvaCKe4owMhSQ43kTllCiZVSUrqNjhd9pzF89D51etwkl-c2Ex_6pBVQTpVg5F8pRQUVrwjO8uhPyRVW-ZB_IWWskoyJDA9_wffQx0lejJacgKhys4xOFmi-yBR9raexGZs40xj0PGA9D1jPA9YUMj9Y9uzt2I9-8DLRDPYXoPHef3-zPBPnnH4CNYeoQQ</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Mosaliganti, K.</creator><creator>Cooper, L.</creator><creator>Sharp, R.</creator><creator>Machiraju, R.</creator><creator>Leone, G.</creator><creator>Kun Huang</creator><creator>Saltz, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>Reconstruction of Cellular Biological Structures from Optical Microscopy Data</title><author>Mosaliganti, K. ; Cooper, L. ; Sharp, R. ; Machiraju, R. ; Leone, G. ; Kun Huang ; Saltz, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomedical imaging</topic><topic>Biomedical optical imaging</topic><topic>Cancer</topic><topic>Cellular</topic><topic>Computer Graphics</topic><topic>Diseases</topic><topic>High-resolution imaging</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing and Computer Vision</topic><topic>Image reconstruction</topic><topic>Image Representation</topic><topic>Image segmentation</topic><topic>Image-based rendering</topic><topic>Medical</topic><topic>Microscopy, Confocal - methods</topic><topic>Optical imaging</topic><topic>Optical microscopy</topic><topic>partitioning</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reconstruction</topic><topic>Region growing</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Size and shape</topic><topic>Studies</topic><topic>Subcellular Fractions - ultrastructure</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosaliganti, K.</creatorcontrib><creatorcontrib>Cooper, L.</creatorcontrib><creatorcontrib>Sharp, R.</creatorcontrib><creatorcontrib>Machiraju, R.</creatorcontrib><creatorcontrib>Leone, G.</creatorcontrib><creatorcontrib>Kun Huang</creatorcontrib><creatorcontrib>Saltz, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosaliganti, K.</au><au>Cooper, L.</au><au>Sharp, R.</au><au>Machiraju, R.</au><au>Leone, G.</au><au>Kun Huang</au><au>Saltz, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of Cellular Biological Structures from Optical Microscopy Data</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>14</volume><issue>4</issue><spage>863</spage><epage>876</epage><pages>863-876</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Developments in optical microscopy imaging have generated large high-resolution data sets that have spurred medical researchers to conduct investigations into mechanisms of disease, including cancer at cellular and subcellular levels. The work reported here demonstrates that a suitable methodology can be conceived that isolates modality-dependent effects from the larger segmentation task and that 3D reconstructions can be cognizant of shapes as evident in the available 2D planar images. In the current realization, a method based on active geodesic contours is first deployed to counter the ambiguity that exists in separating overlapping cells on the image plane. Later, another segmentation effort based on a variant of Voronoi tessellations improves the delineation of the cell boundaries using a Bayesian formulation. In the next stage, the cells are interpolated across the third dimension thereby mitigating the poor structural correlation that exists in that dimension. We deploy our methods on three separate data sets obtained from light, confocal, and phase-contrast microscopy and validate the results appropriately.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18467760</pmid><doi>10.1109/TVCG.2008.30</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2008-07, Vol.14 (4), p.863-876 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_miscellaneous_875056521 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Biomedical imaging Biomedical optical imaging Cancer Cellular Computer Graphics Diseases High-resolution imaging Image Interpretation, Computer-Assisted - methods Image Processing and Computer Vision Image reconstruction Image Representation Image segmentation Image-based rendering Medical Microscopy, Confocal - methods Optical imaging Optical microscopy partitioning Pattern Recognition, Automated - methods Reconstruction Region growing Segmentation Shape Size and shape Studies Subcellular Fractions - ultrastructure Three dimensional |
title | Reconstruction of Cellular Biological Structures from Optical Microscopy Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20Cellular%20Biological%20Structures%20from%20Optical%20Microscopy%20Data&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Mosaliganti,%20K.&rft.date=2008-07-01&rft.volume=14&rft.issue=4&rft.spage=863&rft.epage=876&rft.pages=863-876&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2008.30&rft_dat=%3Cproquest_pubme%3E903639742%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862075923&rft_id=info:pmid/18467760&rft_ieee_id=4445666&rfr_iscdi=true |