Loading…

Reconstruction of Cellular Biological Structures from Optical Microscopy Data

Developments in optical microscopy imaging have generated large high-resolution data sets that have spurred medical researchers to conduct investigations into mechanisms of disease, including cancer at cellular and subcellular levels. The work reported here demonstrates that a suitable methodology c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2008-07, Vol.14 (4), p.863-876
Main Authors: Mosaliganti, K., Cooper, L., Sharp, R., Machiraju, R., Leone, G., Kun Huang, Saltz, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833
cites cdi_FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833
container_end_page 876
container_issue 4
container_start_page 863
container_title IEEE transactions on visualization and computer graphics
container_volume 14
creator Mosaliganti, K.
Cooper, L.
Sharp, R.
Machiraju, R.
Leone, G.
Kun Huang
Saltz, J.
description Developments in optical microscopy imaging have generated large high-resolution data sets that have spurred medical researchers to conduct investigations into mechanisms of disease, including cancer at cellular and subcellular levels. The work reported here demonstrates that a suitable methodology can be conceived that isolates modality-dependent effects from the larger segmentation task and that 3D reconstructions can be cognizant of shapes as evident in the available 2D planar images. In the current realization, a method based on active geodesic contours is first deployed to counter the ambiguity that exists in separating overlapping cells on the image plane. Later, another segmentation effort based on a variant of Voronoi tessellations improves the delineation of the cell boundaries using a Bayesian formulation. In the next stage, the cells are interpolated across the third dimension thereby mitigating the poor structural correlation that exists in that dimension. We deploy our methods on three separate data sets obtained from light, confocal, and phase-contrast microscopy and validate the results appropriately.
doi_str_mv 10.1109/TVCG.2008.30
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_875056521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4445666</ieee_id><sourcerecordid>903639742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833</originalsourceid><addsrcrecordid>eNqF0UlLAzEUB_AgivvNmyCDB7049WWZLEetKyiC2zUkaUZGpk1NZg799qa2KHhQCCS8_Hg83h-hPQwDjEGdPr8OrwcEQA4orKBNrBguoQK-mt8gREk44RtoK6V3AMyYVOtoA0vGheCwie4fvQuT1MXedU2YFKEuhr5t-9bE4rwJbXhrnGmLpy_QR5-KOoZx8TDtvur3jYshuTCdFRemMztorTZt8rvLexu9XF0-D2_Ku4fr2-HZXekYV10pvbWOVAxGI2AMiGV5HkqVq6Wz1nsDvvaCKe4owMhSQ43kTllCiZVSUrqNjhd9pzF89D51etwkl-c2Ex_6pBVQTpVg5F8pRQUVrwjO8uhPyRVW-ZB_IWWskoyJDA9_wffQx0lejJacgKhys4xOFmi-yBR9raexGZs40xj0PGA9D1jPA9YUMj9Y9uzt2I9-8DLRDPYXoPHef3-zPBPnnH4CNYeoQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862075923</pqid></control><display><type>article</type><title>Reconstruction of Cellular Biological Structures from Optical Microscopy Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mosaliganti, K. ; Cooper, L. ; Sharp, R. ; Machiraju, R. ; Leone, G. ; Kun Huang ; Saltz, J.</creator><creatorcontrib>Mosaliganti, K. ; Cooper, L. ; Sharp, R. ; Machiraju, R. ; Leone, G. ; Kun Huang ; Saltz, J.</creatorcontrib><description>Developments in optical microscopy imaging have generated large high-resolution data sets that have spurred medical researchers to conduct investigations into mechanisms of disease, including cancer at cellular and subcellular levels. The work reported here demonstrates that a suitable methodology can be conceived that isolates modality-dependent effects from the larger segmentation task and that 3D reconstructions can be cognizant of shapes as evident in the available 2D planar images. In the current realization, a method based on active geodesic contours is first deployed to counter the ambiguity that exists in separating overlapping cells on the image plane. Later, another segmentation effort based on a variant of Voronoi tessellations improves the delineation of the cell boundaries using a Bayesian formulation. In the next stage, the cells are interpolated across the third dimension thereby mitigating the poor structural correlation that exists in that dimension. We deploy our methods on three separate data sets obtained from light, confocal, and phase-contrast microscopy and validate the results appropriately.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2008.30</identifier><identifier>PMID: 18467760</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biomedical imaging ; Biomedical optical imaging ; Cancer ; Cellular ; Computer Graphics ; Diseases ; High-resolution imaging ; Image Interpretation, Computer-Assisted - methods ; Image Processing and Computer Vision ; Image reconstruction ; Image Representation ; Image segmentation ; Image-based rendering ; Medical ; Microscopy, Confocal - methods ; Optical imaging ; Optical microscopy ; partitioning ; Pattern Recognition, Automated - methods ; Reconstruction ; Region growing ; Segmentation ; Shape ; Size and shape ; Studies ; Subcellular Fractions - ultrastructure ; Three dimensional</subject><ispartof>IEEE transactions on visualization and computer graphics, 2008-07, Vol.14 (4), p.863-876</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833</citedby><cites>FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4445666$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18467760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mosaliganti, K.</creatorcontrib><creatorcontrib>Cooper, L.</creatorcontrib><creatorcontrib>Sharp, R.</creatorcontrib><creatorcontrib>Machiraju, R.</creatorcontrib><creatorcontrib>Leone, G.</creatorcontrib><creatorcontrib>Kun Huang</creatorcontrib><creatorcontrib>Saltz, J.</creatorcontrib><title>Reconstruction of Cellular Biological Structures from Optical Microscopy Data</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Developments in optical microscopy imaging have generated large high-resolution data sets that have spurred medical researchers to conduct investigations into mechanisms of disease, including cancer at cellular and subcellular levels. The work reported here demonstrates that a suitable methodology can be conceived that isolates modality-dependent effects from the larger segmentation task and that 3D reconstructions can be cognizant of shapes as evident in the available 2D planar images. In the current realization, a method based on active geodesic contours is first deployed to counter the ambiguity that exists in separating overlapping cells on the image plane. Later, another segmentation effort based on a variant of Voronoi tessellations improves the delineation of the cell boundaries using a Bayesian formulation. In the next stage, the cells are interpolated across the third dimension thereby mitigating the poor structural correlation that exists in that dimension. We deploy our methods on three separate data sets obtained from light, confocal, and phase-contrast microscopy and validate the results appropriately.</description><subject>Biomedical imaging</subject><subject>Biomedical optical imaging</subject><subject>Cancer</subject><subject>Cellular</subject><subject>Computer Graphics</subject><subject>Diseases</subject><subject>High-resolution imaging</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing and Computer Vision</subject><subject>Image reconstruction</subject><subject>Image Representation</subject><subject>Image segmentation</subject><subject>Image-based rendering</subject><subject>Medical</subject><subject>Microscopy, Confocal - methods</subject><subject>Optical imaging</subject><subject>Optical microscopy</subject><subject>partitioning</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reconstruction</subject><subject>Region growing</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Size and shape</subject><subject>Studies</subject><subject>Subcellular Fractions - ultrastructure</subject><subject>Three dimensional</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0UlLAzEUB_AgivvNmyCDB7049WWZLEetKyiC2zUkaUZGpk1NZg799qa2KHhQCCS8_Hg83h-hPQwDjEGdPr8OrwcEQA4orKBNrBguoQK-mt8gREk44RtoK6V3AMyYVOtoA0vGheCwie4fvQuT1MXedU2YFKEuhr5t-9bE4rwJbXhrnGmLpy_QR5-KOoZx8TDtvur3jYshuTCdFRemMztorTZt8rvLexu9XF0-D2_Ku4fr2-HZXekYV10pvbWOVAxGI2AMiGV5HkqVq6Wz1nsDvvaCKe4owMhSQ43kTllCiZVSUrqNjhd9pzF89D51etwkl-c2Ex_6pBVQTpVg5F8pRQUVrwjO8uhPyRVW-ZB_IWWskoyJDA9_wffQx0lejJacgKhys4xOFmi-yBR9raexGZs40xj0PGA9D1jPA9YUMj9Y9uzt2I9-8DLRDPYXoPHef3-zPBPnnH4CNYeoQQ</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Mosaliganti, K.</creator><creator>Cooper, L.</creator><creator>Sharp, R.</creator><creator>Machiraju, R.</creator><creator>Leone, G.</creator><creator>Kun Huang</creator><creator>Saltz, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>Reconstruction of Cellular Biological Structures from Optical Microscopy Data</title><author>Mosaliganti, K. ; Cooper, L. ; Sharp, R. ; Machiraju, R. ; Leone, G. ; Kun Huang ; Saltz, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomedical imaging</topic><topic>Biomedical optical imaging</topic><topic>Cancer</topic><topic>Cellular</topic><topic>Computer Graphics</topic><topic>Diseases</topic><topic>High-resolution imaging</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing and Computer Vision</topic><topic>Image reconstruction</topic><topic>Image Representation</topic><topic>Image segmentation</topic><topic>Image-based rendering</topic><topic>Medical</topic><topic>Microscopy, Confocal - methods</topic><topic>Optical imaging</topic><topic>Optical microscopy</topic><topic>partitioning</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reconstruction</topic><topic>Region growing</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Size and shape</topic><topic>Studies</topic><topic>Subcellular Fractions - ultrastructure</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosaliganti, K.</creatorcontrib><creatorcontrib>Cooper, L.</creatorcontrib><creatorcontrib>Sharp, R.</creatorcontrib><creatorcontrib>Machiraju, R.</creatorcontrib><creatorcontrib>Leone, G.</creatorcontrib><creatorcontrib>Kun Huang</creatorcontrib><creatorcontrib>Saltz, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosaliganti, K.</au><au>Cooper, L.</au><au>Sharp, R.</au><au>Machiraju, R.</au><au>Leone, G.</au><au>Kun Huang</au><au>Saltz, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of Cellular Biological Structures from Optical Microscopy Data</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>14</volume><issue>4</issue><spage>863</spage><epage>876</epage><pages>863-876</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Developments in optical microscopy imaging have generated large high-resolution data sets that have spurred medical researchers to conduct investigations into mechanisms of disease, including cancer at cellular and subcellular levels. The work reported here demonstrates that a suitable methodology can be conceived that isolates modality-dependent effects from the larger segmentation task and that 3D reconstructions can be cognizant of shapes as evident in the available 2D planar images. In the current realization, a method based on active geodesic contours is first deployed to counter the ambiguity that exists in separating overlapping cells on the image plane. Later, another segmentation effort based on a variant of Voronoi tessellations improves the delineation of the cell boundaries using a Bayesian formulation. In the next stage, the cells are interpolated across the third dimension thereby mitigating the poor structural correlation that exists in that dimension. We deploy our methods on three separate data sets obtained from light, confocal, and phase-contrast microscopy and validate the results appropriately.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18467760</pmid><doi>10.1109/TVCG.2008.30</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2008-07, Vol.14 (4), p.863-876
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_875056521
source IEEE Electronic Library (IEL) Journals
subjects Biomedical imaging
Biomedical optical imaging
Cancer
Cellular
Computer Graphics
Diseases
High-resolution imaging
Image Interpretation, Computer-Assisted - methods
Image Processing and Computer Vision
Image reconstruction
Image Representation
Image segmentation
Image-based rendering
Medical
Microscopy, Confocal - methods
Optical imaging
Optical microscopy
partitioning
Pattern Recognition, Automated - methods
Reconstruction
Region growing
Segmentation
Shape
Size and shape
Studies
Subcellular Fractions - ultrastructure
Three dimensional
title Reconstruction of Cellular Biological Structures from Optical Microscopy Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20Cellular%20Biological%20Structures%20from%20Optical%20Microscopy%20Data&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Mosaliganti,%20K.&rft.date=2008-07-01&rft.volume=14&rft.issue=4&rft.spage=863&rft.epage=876&rft.pages=863-876&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2008.30&rft_dat=%3Cproquest_pubme%3E903639742%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-8ebbc2540dd04402b4846339cf8cbbeea0efe7496c300db3a3a86c9b232b88833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862075923&rft_id=info:pmid/18467760&rft_ieee_id=4445666&rfr_iscdi=true