Loading…
Renormings and the fixed point property in non-commutative L sub(1)-spaces
Let [inline image] be a finite von Neumann algebra. It is known that [inline image] and every non-reflexive subspace of [inline image] fail to have the fixed point property for non-expansive mappings (FPP). We prove a new fixed point theorem for this class of mappings in non-commutative [inline imag...
Saved in:
Published in: | Nonlinear analysis 2011-07, Vol.74 (10), p.3091-3098 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3098 |
container_issue | 10 |
container_start_page | 3091 |
container_title | Nonlinear analysis |
container_volume | 74 |
creator | Hernandez-Linares, Carlos A Japon, Maria A |
description | Let [inline image] be a finite von Neumann algebra. It is known that [inline image] and every non-reflexive subspace of [inline image] fail to have the fixed point property for non-expansive mappings (FPP). We prove a new fixed point theorem for this class of mappings in non-commutative [inline image] Banach spaces which lets us obtain a sufficient condition such that a closed subspace of [inline image] can be renormed to satisfy the FPP. As a consequence, we deduce that the predual of every atomic finite von Neumann algebra can be renormed with the FPP. |
doi_str_mv | 10.1016/j.na.2011.01.022 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_875057662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>875057662</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_8750576623</originalsourceid><addsrcrecordid>eNqNjLFuwjAQQD1QqWnpzngb7ZD07BCHvWqFEBNi6BaZcICj5BxyTtX-fRn4AKQnveXpKTXTmGnU9r3J2GUGtc7wijETlWBuTVos7PejehJpEFGXuU3Uekschs7zScDxAeKZ4Oh_6QB98ByhH0JPQ_wDz8CB0zp03Rhd9D8EG5Bx_6rfUuldTTJVD0fXCr3c_KzmX5-7j1V6fVxGklh1XmpqW8cURqmWZYFFaa3J7y__AdzWROo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875057662</pqid></control><display><type>article</type><title>Renormings and the fixed point property in non-commutative L sub(1)-spaces</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Hernandez-Linares, Carlos A ; Japon, Maria A</creator><creatorcontrib>Hernandez-Linares, Carlos A ; Japon, Maria A</creatorcontrib><description>Let [inline image] be a finite von Neumann algebra. It is known that [inline image] and every non-reflexive subspace of [inline image] fail to have the fixed point property for non-expansive mappings (FPP). We prove a new fixed point theorem for this class of mappings in non-commutative [inline image] Banach spaces which lets us obtain a sufficient condition such that a closed subspace of [inline image] can be renormed to satisfy the FPP. As a consequence, we deduce that the predual of every atomic finite von Neumann algebra can be renormed with the FPP.</description><identifier>ISSN: 0362-546X</identifier><identifier>DOI: 10.1016/j.na.2011.01.022</identifier><language>eng</language><subject>Algebra ; Banach space ; Fixed points (mathematics) ; Mapping ; Mathematical analysis ; Nonlinearity ; Subspaces ; Theorems</subject><ispartof>Nonlinear analysis, 2011-07, Vol.74 (10), p.3091-3098</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Hernandez-Linares, Carlos A</creatorcontrib><creatorcontrib>Japon, Maria A</creatorcontrib><title>Renormings and the fixed point property in non-commutative L sub(1)-spaces</title><title>Nonlinear analysis</title><description>Let [inline image] be a finite von Neumann algebra. It is known that [inline image] and every non-reflexive subspace of [inline image] fail to have the fixed point property for non-expansive mappings (FPP). We prove a new fixed point theorem for this class of mappings in non-commutative [inline image] Banach spaces which lets us obtain a sufficient condition such that a closed subspace of [inline image] can be renormed to satisfy the FPP. As a consequence, we deduce that the predual of every atomic finite von Neumann algebra can be renormed with the FPP.</description><subject>Algebra</subject><subject>Banach space</subject><subject>Fixed points (mathematics)</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Subspaces</subject><subject>Theorems</subject><issn>0362-546X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNjLFuwjAQQD1QqWnpzngb7ZD07BCHvWqFEBNi6BaZcICj5BxyTtX-fRn4AKQnveXpKTXTmGnU9r3J2GUGtc7wijETlWBuTVos7PejehJpEFGXuU3Uekschs7zScDxAeKZ4Oh_6QB98ByhH0JPQ_wDz8CB0zp03Rhd9D8EG5Bx_6rfUuldTTJVD0fXCr3c_KzmX5-7j1V6fVxGklh1XmpqW8cURqmWZYFFaa3J7y__AdzWROo</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Hernandez-Linares, Carlos A</creator><creator>Japon, Maria A</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Renormings and the fixed point property in non-commutative L sub(1)-spaces</title><author>Hernandez-Linares, Carlos A ; Japon, Maria A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_8750576623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Banach space</topic><topic>Fixed points (mathematics)</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Subspaces</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernandez-Linares, Carlos A</creatorcontrib><creatorcontrib>Japon, Maria A</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernandez-Linares, Carlos A</au><au>Japon, Maria A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renormings and the fixed point property in non-commutative L sub(1)-spaces</atitle><jtitle>Nonlinear analysis</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>74</volume><issue>10</issue><spage>3091</spage><epage>3098</epage><pages>3091-3098</pages><issn>0362-546X</issn><abstract>Let [inline image] be a finite von Neumann algebra. It is known that [inline image] and every non-reflexive subspace of [inline image] fail to have the fixed point property for non-expansive mappings (FPP). We prove a new fixed point theorem for this class of mappings in non-commutative [inline image] Banach spaces which lets us obtain a sufficient condition such that a closed subspace of [inline image] can be renormed to satisfy the FPP. As a consequence, we deduce that the predual of every atomic finite von Neumann algebra can be renormed with the FPP.</abstract><doi>10.1016/j.na.2011.01.022</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2011-07, Vol.74 (10), p.3091-3098 |
issn | 0362-546X |
language | eng |
recordid | cdi_proquest_miscellaneous_875057662 |
source | ScienceDirect Freedom Collection; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Algebra Banach space Fixed points (mathematics) Mapping Mathematical analysis Nonlinearity Subspaces Theorems |
title | Renormings and the fixed point property in non-commutative L sub(1)-spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renormings%20and%20the%20fixed%20point%20property%20in%20non-commutative%20L%20sub(1)-spaces&rft.jtitle=Nonlinear%20analysis&rft.au=Hernandez-Linares,%20Carlos%20A&rft.date=2011-07-01&rft.volume=74&rft.issue=10&rft.spage=3091&rft.epage=3098&rft.pages=3091-3098&rft.issn=0362-546X&rft_id=info:doi/10.1016/j.na.2011.01.022&rft_dat=%3Cproquest%3E875057662%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_8750576623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=875057662&rft_id=info:pmid/&rfr_iscdi=true |