Loading…

On the Assumption of Spherical Symmetry and Sparseness for the Frequency-Domain Speech Model

A new independent component analysis (ICA) formulation called independent vector analysis (IVA) was proposed in order to solve the permutation problem in convolutive blind source separation (BSS). Instead of running ICA in each frequency bin separately and correcting the disorder with an additional...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2007-07, Vol.15 (5), p.1521-1528
Main Authors: Lee, Intae, Lee, Te-Won
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153
cites cdi_FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153
container_end_page 1528
container_issue 5
container_start_page 1521
container_title IEEE transactions on audio, speech, and language processing
container_volume 15
creator Lee, Intae
Lee, Te-Won
description A new independent component analysis (ICA) formulation called independent vector analysis (IVA) was proposed in order to solve the permutation problem in convolutive blind source separation (BSS). Instead of running ICA in each frequency bin separately and correcting the disorder with an additional algorithmic scheme afterwards, IVA exploited the dependency among the frequency components of a source and dealt with them as a multivariate source by modeling it with sparse and spherically, or radially, symmetric joint probability density functions (pdfs). In this paper, we compare the speech separation performances of IVA by using a group of l p -norm-invariant sparse pdfs where the value of and the sparseness can be controlled. Also, we derive an IVA algorithm from a nonparametric perspective with the constraint of spherical symmetry and high dimensionality. Simulation results confirm the efficiency of assuming sparseness and spherical symmetry for the speech model in the frequency domain.
doi_str_mv 10.1109/TASL.2007.899231
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875061605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4244526</ieee_id><sourcerecordid>36332139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhiMEElDYkVgiBphSfP5KPFZ8S0UMhQ3Jcp2zmiqJi50M_fckFHVgYLrT6XlPd3qS5ALIFICo2_fZYj6lhOTTQinK4CA5ASGKLFeUH-57kMfJaYxrQjiTHE6Sz7c27VaYzmLsm01X-Tb1Ll1sVhgqa-p0sW0a7MI2NW05jE2I2GKMqfPhJ_cY8KvH1m6ze9-Yqh0YRLtKX32J9Vly5Ewd8fy3TpKPx4f3u-ds_vb0cjebZ5YJ1mWypCWXDMFZAMUZ50iNJKpQS8eLYrmUTgqxdNY4wsFx45SgBmRpiQELgk2Sm93eTfDDNbHTTRUt1rVp0fdRF7kgEiQZyet_SSYZo8DUAF79Ade-D-3whVaQc55LOUJkB9ngYwzo9CZUjQlbDUSPVvRoRY9W9M7KELncRSpE3OOcci6oZN-b-ogU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917447669</pqid></control><display><type>article</type><title>On the Assumption of Spherical Symmetry and Sparseness for the Frequency-Domain Speech Model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lee, Intae ; Lee, Te-Won</creator><creatorcontrib>Lee, Intae ; Lee, Te-Won</creatorcontrib><description>A new independent component analysis (ICA) formulation called independent vector analysis (IVA) was proposed in order to solve the permutation problem in convolutive blind source separation (BSS). Instead of running ICA in each frequency bin separately and correcting the disorder with an additional algorithmic scheme afterwards, IVA exploited the dependency among the frequency components of a source and dealt with them as a multivariate source by modeling it with sparse and spherically, or radially, symmetric joint probability density functions (pdfs). In this paper, we compare the speech separation performances of IVA by using a group of l p -norm-invariant sparse pdfs where the value of and the sparseness can be controlled. Also, we derive an IVA algorithm from a nonparametric perspective with the constraint of spherical symmetry and high dimensionality. Simulation results confirm the efficiency of assuming sparseness and spherical symmetry for the speech model in the frequency domain.</description><identifier>ISSN: 1558-7916</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-7924</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASL.2007.899231</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Blind source separation ; Blind source separation (BSS) ; cocktail party problem ; convolutive mixture ; entropy estimator ; frequency domain ; Frequency domain analysis ; Independent component analysis ; independent component analysis (ICA) ; independent vector analysis (IVA) ; Instruction sets ; Multidimensional systems ; Natural language processing ; order statistics ; permutation problem ; Probability density function ; Probability density functions ; RADICAL ; Running ; Separation ; Signal analysis ; Signal processing algorithms ; Source separation ; Speech ; Speech analysis ; statistical signal processing ; Symmetry ; Vector analysis</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2007-07, Vol.15 (5), p.1521-1528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153</citedby><cites>FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4244526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lee, Intae</creatorcontrib><creatorcontrib>Lee, Te-Won</creatorcontrib><title>On the Assumption of Spherical Symmetry and Sparseness for the Frequency-Domain Speech Model</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>A new independent component analysis (ICA) formulation called independent vector analysis (IVA) was proposed in order to solve the permutation problem in convolutive blind source separation (BSS). Instead of running ICA in each frequency bin separately and correcting the disorder with an additional algorithmic scheme afterwards, IVA exploited the dependency among the frequency components of a source and dealt with them as a multivariate source by modeling it with sparse and spherically, or radially, symmetric joint probability density functions (pdfs). In this paper, we compare the speech separation performances of IVA by using a group of l p -norm-invariant sparse pdfs where the value of and the sparseness can be controlled. Also, we derive an IVA algorithm from a nonparametric perspective with the constraint of spherical symmetry and high dimensionality. Simulation results confirm the efficiency of assuming sparseness and spherical symmetry for the speech model in the frequency domain.</description><subject>Algorithms</subject><subject>Blind source separation</subject><subject>Blind source separation (BSS)</subject><subject>cocktail party problem</subject><subject>convolutive mixture</subject><subject>entropy estimator</subject><subject>frequency domain</subject><subject>Frequency domain analysis</subject><subject>Independent component analysis</subject><subject>independent component analysis (ICA)</subject><subject>independent vector analysis (IVA)</subject><subject>Instruction sets</subject><subject>Multidimensional systems</subject><subject>Natural language processing</subject><subject>order statistics</subject><subject>permutation problem</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>RADICAL</subject><subject>Running</subject><subject>Separation</subject><subject>Signal analysis</subject><subject>Signal processing algorithms</subject><subject>Source separation</subject><subject>Speech</subject><subject>Speech analysis</subject><subject>statistical signal processing</subject><subject>Symmetry</subject><subject>Vector analysis</subject><issn>1558-7916</issn><issn>2329-9290</issn><issn>1558-7924</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kT1PwzAQhiMEElDYkVgiBphSfP5KPFZ8S0UMhQ3Jcp2zmiqJi50M_fckFHVgYLrT6XlPd3qS5ALIFICo2_fZYj6lhOTTQinK4CA5ASGKLFeUH-57kMfJaYxrQjiTHE6Sz7c27VaYzmLsm01X-Tb1Ll1sVhgqa-p0sW0a7MI2NW05jE2I2GKMqfPhJ_cY8KvH1m6ze9-Yqh0YRLtKX32J9Vly5Ewd8fy3TpKPx4f3u-ds_vb0cjebZ5YJ1mWypCWXDMFZAMUZ50iNJKpQS8eLYrmUTgqxdNY4wsFx45SgBmRpiQELgk2Sm93eTfDDNbHTTRUt1rVp0fdRF7kgEiQZyet_SSYZo8DUAF79Ade-D-3whVaQc55LOUJkB9ngYwzo9CZUjQlbDUSPVvRoRY9W9M7KELncRSpE3OOcci6oZN-b-ogU</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Lee, Intae</creator><creator>Lee, Te-Won</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070701</creationdate><title>On the Assumption of Spherical Symmetry and Sparseness for the Frequency-Domain Speech Model</title><author>Lee, Intae ; Lee, Te-Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Blind source separation</topic><topic>Blind source separation (BSS)</topic><topic>cocktail party problem</topic><topic>convolutive mixture</topic><topic>entropy estimator</topic><topic>frequency domain</topic><topic>Frequency domain analysis</topic><topic>Independent component analysis</topic><topic>independent component analysis (ICA)</topic><topic>independent vector analysis (IVA)</topic><topic>Instruction sets</topic><topic>Multidimensional systems</topic><topic>Natural language processing</topic><topic>order statistics</topic><topic>permutation problem</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>RADICAL</topic><topic>Running</topic><topic>Separation</topic><topic>Signal analysis</topic><topic>Signal processing algorithms</topic><topic>Source separation</topic><topic>Speech</topic><topic>Speech analysis</topic><topic>statistical signal processing</topic><topic>Symmetry</topic><topic>Vector analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Intae</creatorcontrib><creatorcontrib>Lee, Te-Won</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Intae</au><au>Lee, Te-Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Assumption of Spherical Symmetry and Sparseness for the Frequency-Domain Speech Model</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>15</volume><issue>5</issue><spage>1521</spage><epage>1528</epage><pages>1521-1528</pages><issn>1558-7916</issn><issn>2329-9290</issn><eissn>1558-7924</eissn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>A new independent component analysis (ICA) formulation called independent vector analysis (IVA) was proposed in order to solve the permutation problem in convolutive blind source separation (BSS). Instead of running ICA in each frequency bin separately and correcting the disorder with an additional algorithmic scheme afterwards, IVA exploited the dependency among the frequency components of a source and dealt with them as a multivariate source by modeling it with sparse and spherically, or radially, symmetric joint probability density functions (pdfs). In this paper, we compare the speech separation performances of IVA by using a group of l p -norm-invariant sparse pdfs where the value of and the sparseness can be controlled. Also, we derive an IVA algorithm from a nonparametric perspective with the constraint of spherical symmetry and high dimensionality. Simulation results confirm the efficiency of assuming sparseness and spherical symmetry for the speech model in the frequency domain.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASL.2007.899231</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1558-7916
ispartof IEEE transactions on audio, speech, and language processing, 2007-07, Vol.15 (5), p.1521-1528
issn 1558-7916
2329-9290
1558-7924
2329-9304
language eng
recordid cdi_proquest_miscellaneous_875061605
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Blind source separation
Blind source separation (BSS)
cocktail party problem
convolutive mixture
entropy estimator
frequency domain
Frequency domain analysis
Independent component analysis
independent component analysis (ICA)
independent vector analysis (IVA)
Instruction sets
Multidimensional systems
Natural language processing
order statistics
permutation problem
Probability density function
Probability density functions
RADICAL
Running
Separation
Signal analysis
Signal processing algorithms
Source separation
Speech
Speech analysis
statistical signal processing
Symmetry
Vector analysis
title On the Assumption of Spherical Symmetry and Sparseness for the Frequency-Domain Speech Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Assumption%20of%20Spherical%20Symmetry%20and%20Sparseness%20for%20the%20Frequency-Domain%20Speech%20Model&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Lee,%20Intae&rft.date=2007-07-01&rft.volume=15&rft.issue=5&rft.spage=1521&rft.epage=1528&rft.pages=1521-1528&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2007.899231&rft_dat=%3Cproquest_cross%3E36332139%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=917447669&rft_id=info:pmid/&rft_ieee_id=4244526&rfr_iscdi=true