Loading…
On the Assumption of Spherical Symmetry and Sparseness for the Frequency-Domain Speech Model
A new independent component analysis (ICA) formulation called independent vector analysis (IVA) was proposed in order to solve the permutation problem in convolutive blind source separation (BSS). Instead of running ICA in each frequency bin separately and correcting the disorder with an additional...
Saved in:
Published in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2007-07, Vol.15 (5), p.1521-1528 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153 |
container_end_page | 1528 |
container_issue | 5 |
container_start_page | 1521 |
container_title | IEEE transactions on audio, speech, and language processing |
container_volume | 15 |
creator | Lee, Intae Lee, Te-Won |
description | A new independent component analysis (ICA) formulation called independent vector analysis (IVA) was proposed in order to solve the permutation problem in convolutive blind source separation (BSS). Instead of running ICA in each frequency bin separately and correcting the disorder with an additional algorithmic scheme afterwards, IVA exploited the dependency among the frequency components of a source and dealt with them as a multivariate source by modeling it with sparse and spherically, or radially, symmetric joint probability density functions (pdfs). In this paper, we compare the speech separation performances of IVA by using a group of l p -norm-invariant sparse pdfs where the value of and the sparseness can be controlled. Also, we derive an IVA algorithm from a nonparametric perspective with the constraint of spherical symmetry and high dimensionality. Simulation results confirm the efficiency of assuming sparseness and spherical symmetry for the speech model in the frequency domain. |
doi_str_mv | 10.1109/TASL.2007.899231 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875061605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4244526</ieee_id><sourcerecordid>36332139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhiMEElDYkVgiBphSfP5KPFZ8S0UMhQ3Jcp2zmiqJi50M_fckFHVgYLrT6XlPd3qS5ALIFICo2_fZYj6lhOTTQinK4CA5ASGKLFeUH-57kMfJaYxrQjiTHE6Sz7c27VaYzmLsm01X-Tb1Ll1sVhgqa-p0sW0a7MI2NW05jE2I2GKMqfPhJ_cY8KvH1m6ze9-Yqh0YRLtKX32J9Vly5Ewd8fy3TpKPx4f3u-ds_vb0cjebZ5YJ1mWypCWXDMFZAMUZ50iNJKpQS8eLYrmUTgqxdNY4wsFx45SgBmRpiQELgk2Sm93eTfDDNbHTTRUt1rVp0fdRF7kgEiQZyet_SSYZo8DUAF79Ade-D-3whVaQc55LOUJkB9ngYwzo9CZUjQlbDUSPVvRoRY9W9M7KELncRSpE3OOcci6oZN-b-ogU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917447669</pqid></control><display><type>article</type><title>On the Assumption of Spherical Symmetry and Sparseness for the Frequency-Domain Speech Model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lee, Intae ; Lee, Te-Won</creator><creatorcontrib>Lee, Intae ; Lee, Te-Won</creatorcontrib><description>A new independent component analysis (ICA) formulation called independent vector analysis (IVA) was proposed in order to solve the permutation problem in convolutive blind source separation (BSS). Instead of running ICA in each frequency bin separately and correcting the disorder with an additional algorithmic scheme afterwards, IVA exploited the dependency among the frequency components of a source and dealt with them as a multivariate source by modeling it with sparse and spherically, or radially, symmetric joint probability density functions (pdfs). In this paper, we compare the speech separation performances of IVA by using a group of l p -norm-invariant sparse pdfs where the value of and the sparseness can be controlled. Also, we derive an IVA algorithm from a nonparametric perspective with the constraint of spherical symmetry and high dimensionality. Simulation results confirm the efficiency of assuming sparseness and spherical symmetry for the speech model in the frequency domain.</description><identifier>ISSN: 1558-7916</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-7924</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASL.2007.899231</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Blind source separation ; Blind source separation (BSS) ; cocktail party problem ; convolutive mixture ; entropy estimator ; frequency domain ; Frequency domain analysis ; Independent component analysis ; independent component analysis (ICA) ; independent vector analysis (IVA) ; Instruction sets ; Multidimensional systems ; Natural language processing ; order statistics ; permutation problem ; Probability density function ; Probability density functions ; RADICAL ; Running ; Separation ; Signal analysis ; Signal processing algorithms ; Source separation ; Speech ; Speech analysis ; statistical signal processing ; Symmetry ; Vector analysis</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2007-07, Vol.15 (5), p.1521-1528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153</citedby><cites>FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4244526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lee, Intae</creatorcontrib><creatorcontrib>Lee, Te-Won</creatorcontrib><title>On the Assumption of Spherical Symmetry and Sparseness for the Frequency-Domain Speech Model</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>A new independent component analysis (ICA) formulation called independent vector analysis (IVA) was proposed in order to solve the permutation problem in convolutive blind source separation (BSS). Instead of running ICA in each frequency bin separately and correcting the disorder with an additional algorithmic scheme afterwards, IVA exploited the dependency among the frequency components of a source and dealt with them as a multivariate source by modeling it with sparse and spherically, or radially, symmetric joint probability density functions (pdfs). In this paper, we compare the speech separation performances of IVA by using a group of l p -norm-invariant sparse pdfs where the value of and the sparseness can be controlled. Also, we derive an IVA algorithm from a nonparametric perspective with the constraint of spherical symmetry and high dimensionality. Simulation results confirm the efficiency of assuming sparseness and spherical symmetry for the speech model in the frequency domain.</description><subject>Algorithms</subject><subject>Blind source separation</subject><subject>Blind source separation (BSS)</subject><subject>cocktail party problem</subject><subject>convolutive mixture</subject><subject>entropy estimator</subject><subject>frequency domain</subject><subject>Frequency domain analysis</subject><subject>Independent component analysis</subject><subject>independent component analysis (ICA)</subject><subject>independent vector analysis (IVA)</subject><subject>Instruction sets</subject><subject>Multidimensional systems</subject><subject>Natural language processing</subject><subject>order statistics</subject><subject>permutation problem</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>RADICAL</subject><subject>Running</subject><subject>Separation</subject><subject>Signal analysis</subject><subject>Signal processing algorithms</subject><subject>Source separation</subject><subject>Speech</subject><subject>Speech analysis</subject><subject>statistical signal processing</subject><subject>Symmetry</subject><subject>Vector analysis</subject><issn>1558-7916</issn><issn>2329-9290</issn><issn>1558-7924</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kT1PwzAQhiMEElDYkVgiBphSfP5KPFZ8S0UMhQ3Jcp2zmiqJi50M_fckFHVgYLrT6XlPd3qS5ALIFICo2_fZYj6lhOTTQinK4CA5ASGKLFeUH-57kMfJaYxrQjiTHE6Sz7c27VaYzmLsm01X-Tb1Ll1sVhgqa-p0sW0a7MI2NW05jE2I2GKMqfPhJ_cY8KvH1m6ze9-Yqh0YRLtKX32J9Vly5Ewd8fy3TpKPx4f3u-ds_vb0cjebZ5YJ1mWypCWXDMFZAMUZ50iNJKpQS8eLYrmUTgqxdNY4wsFx45SgBmRpiQELgk2Sm93eTfDDNbHTTRUt1rVp0fdRF7kgEiQZyet_SSYZo8DUAF79Ade-D-3whVaQc55LOUJkB9ngYwzo9CZUjQlbDUSPVvRoRY9W9M7KELncRSpE3OOcci6oZN-b-ogU</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Lee, Intae</creator><creator>Lee, Te-Won</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070701</creationdate><title>On the Assumption of Spherical Symmetry and Sparseness for the Frequency-Domain Speech Model</title><author>Lee, Intae ; Lee, Te-Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Blind source separation</topic><topic>Blind source separation (BSS)</topic><topic>cocktail party problem</topic><topic>convolutive mixture</topic><topic>entropy estimator</topic><topic>frequency domain</topic><topic>Frequency domain analysis</topic><topic>Independent component analysis</topic><topic>independent component analysis (ICA)</topic><topic>independent vector analysis (IVA)</topic><topic>Instruction sets</topic><topic>Multidimensional systems</topic><topic>Natural language processing</topic><topic>order statistics</topic><topic>permutation problem</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>RADICAL</topic><topic>Running</topic><topic>Separation</topic><topic>Signal analysis</topic><topic>Signal processing algorithms</topic><topic>Source separation</topic><topic>Speech</topic><topic>Speech analysis</topic><topic>statistical signal processing</topic><topic>Symmetry</topic><topic>Vector analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Intae</creatorcontrib><creatorcontrib>Lee, Te-Won</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Intae</au><au>Lee, Te-Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Assumption of Spherical Symmetry and Sparseness for the Frequency-Domain Speech Model</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>15</volume><issue>5</issue><spage>1521</spage><epage>1528</epage><pages>1521-1528</pages><issn>1558-7916</issn><issn>2329-9290</issn><eissn>1558-7924</eissn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>A new independent component analysis (ICA) formulation called independent vector analysis (IVA) was proposed in order to solve the permutation problem in convolutive blind source separation (BSS). Instead of running ICA in each frequency bin separately and correcting the disorder with an additional algorithmic scheme afterwards, IVA exploited the dependency among the frequency components of a source and dealt with them as a multivariate source by modeling it with sparse and spherically, or radially, symmetric joint probability density functions (pdfs). In this paper, we compare the speech separation performances of IVA by using a group of l p -norm-invariant sparse pdfs where the value of and the sparseness can be controlled. Also, we derive an IVA algorithm from a nonparametric perspective with the constraint of spherical symmetry and high dimensionality. Simulation results confirm the efficiency of assuming sparseness and spherical symmetry for the speech model in the frequency domain.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASL.2007.899231</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-7916 |
ispartof | IEEE transactions on audio, speech, and language processing, 2007-07, Vol.15 (5), p.1521-1528 |
issn | 1558-7916 2329-9290 1558-7924 2329-9304 |
language | eng |
recordid | cdi_proquest_miscellaneous_875061605 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Blind source separation Blind source separation (BSS) cocktail party problem convolutive mixture entropy estimator frequency domain Frequency domain analysis Independent component analysis independent component analysis (ICA) independent vector analysis (IVA) Instruction sets Multidimensional systems Natural language processing order statistics permutation problem Probability density function Probability density functions RADICAL Running Separation Signal analysis Signal processing algorithms Source separation Speech Speech analysis statistical signal processing Symmetry Vector analysis |
title | On the Assumption of Spherical Symmetry and Sparseness for the Frequency-Domain Speech Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Assumption%20of%20Spherical%20Symmetry%20and%20Sparseness%20for%20the%20Frequency-Domain%20Speech%20Model&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Lee,%20Intae&rft.date=2007-07-01&rft.volume=15&rft.issue=5&rft.spage=1521&rft.epage=1528&rft.pages=1521-1528&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2007.899231&rft_dat=%3Cproquest_cross%3E36332139%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-6d2d463e1fc1194344e2a60989bf488bb6f655bfcaf041f4af952a16dc0a1c153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=917447669&rft_id=info:pmid/&rft_ieee_id=4244526&rfr_iscdi=true |