Loading…

A plasticity model for pressure-dependent anisotropic cellular solids

The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characterist...

Full description

Saved in:
Bibliographic Details
Published in:International journal of plasticity 2010-11, Vol.26 (11), p.1591-1605
Main Authors: Alkhader, M., Vural, M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-5027f2b9379e19168533b81ecdf3dbb2bfe2b20f21aac2e0cb9aa9abb0e8e43c3
cites
container_end_page 1605
container_issue 11
container_start_page 1591
container_title International journal of plasticity
container_volume 26
creator Alkhader, M.
Vural, M.
description The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characteristic strain, are used to describe the constitutive response of cellular material along various stress paths. The coupling between loading path and strain hardening is then investigated in characteristic stress–strain domain. The nature of the flow rule that best describes the plastic flow of cellular solid is also investigated. An incremental plasticity framework is proposed to describe the pressure-dependent plastic flow of 2D stochastic cellular solids. The proposed plasticity framework adopts the anisotropic and pressure-dependent yield function recently introduced by Alkhader and Vural [Alkhader M., Vural M., 2009a. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. J. Mech. Phys. Solids 57(5), 871–890]. It has been shown that the proposed yield function can be simply calibrated using elastic constants and flow stresses under uniaixal loading. Comparison of stress fields predicted by continuum plasticity model to the ones obtained from FE analysis shows good agreement for the range of loading paths and strains investigated.
doi_str_mv 10.1016/j.ijplas.2010.01.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875080022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641910000112</els_id><sourcerecordid>875080022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5027f2b9379e19168533b81ecdf3dbb2bfe2b20f21aac2e0cb9aa9abb0e8e43c3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoPPPQinrpOkn5ehGVZP2DBi55Dkk4hpdvUTCvsv7eli0fhwcDw3rw3j7F7DhsOPHtqNq7pW00bAdMK-AS4YCte5GUseJpcshXkSRlnCS-v2Q1RAwBpIfmK7bfRrBycdcMpOvoK26j2IeoDEo0B4wp77Crshkh3jvwQfO9sZLFtx1aHiHzrKrplV7VuCe_Oc82-Xvafu7f48PH6vtseYiuzYohTEHktTCnzEnnJsyKV0hQcbVXLyhhhahRGQC241lYgWFNqXWpjAAtMpJVr9rjc7YP_HpEGdXQ0Z9Ed-pFUkadQAAgxMZOFaYMnClirPrijDifFQc2lqUYtpam5NAV8Akyyh7OBJqvbOujOOvrTCinzXE6x1-x54eH07Y_DoMg67CxWLqAdVOXd_0a_kXeFyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875080022</pqid></control><display><type>article</type><title>A plasticity model for pressure-dependent anisotropic cellular solids</title><source>ScienceDirect Freedom Collection</source><creator>Alkhader, M. ; Vural, M.</creator><creatorcontrib>Alkhader, M. ; Vural, M.</creatorcontrib><description>The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characteristic strain, are used to describe the constitutive response of cellular material along various stress paths. The coupling between loading path and strain hardening is then investigated in characteristic stress–strain domain. The nature of the flow rule that best describes the plastic flow of cellular solid is also investigated. An incremental plasticity framework is proposed to describe the pressure-dependent plastic flow of 2D stochastic cellular solids. The proposed plasticity framework adopts the anisotropic and pressure-dependent yield function recently introduced by Alkhader and Vural [Alkhader M., Vural M., 2009a. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. J. Mech. Phys. Solids 57(5), 871–890]. It has been shown that the proposed yield function can be simply calibrated using elastic constants and flow stresses under uniaixal loading. Comparison of stress fields predicted by continuum plasticity model to the ones obtained from FE analysis shows good agreement for the range of loading paths and strains investigated.</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2010.01.010</identifier><identifier>CODEN: IJPLER</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anisotropic ; Anisotropy ; Cellular ; Cellular solids ; Computer simulation ; Exact sciences and technology ; Finite element method ; Foams ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical models ; Physics ; Plasticity ; Pressure-dependent ; Solid mechanics ; Strain ; Stresses ; Structural and continuum mechanics ; Yield function</subject><ispartof>International journal of plasticity, 2010-11, Vol.26 (11), p.1591-1605</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5027f2b9379e19168533b81ecdf3dbb2bfe2b20f21aac2e0cb9aa9abb0e8e43c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23377385$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alkhader, M.</creatorcontrib><creatorcontrib>Vural, M.</creatorcontrib><title>A plasticity model for pressure-dependent anisotropic cellular solids</title><title>International journal of plasticity</title><description>The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characteristic strain, are used to describe the constitutive response of cellular material along various stress paths. The coupling between loading path and strain hardening is then investigated in characteristic stress–strain domain. The nature of the flow rule that best describes the plastic flow of cellular solid is also investigated. An incremental plasticity framework is proposed to describe the pressure-dependent plastic flow of 2D stochastic cellular solids. The proposed plasticity framework adopts the anisotropic and pressure-dependent yield function recently introduced by Alkhader and Vural [Alkhader M., Vural M., 2009a. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. J. Mech. Phys. Solids 57(5), 871–890]. It has been shown that the proposed yield function can be simply calibrated using elastic constants and flow stresses under uniaixal loading. Comparison of stress fields predicted by continuum plasticity model to the ones obtained from FE analysis shows good agreement for the range of loading paths and strains investigated.</description><subject>Anisotropic</subject><subject>Anisotropy</subject><subject>Cellular</subject><subject>Cellular solids</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Foams</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Plasticity</subject><subject>Pressure-dependent</subject><subject>Solid mechanics</subject><subject>Strain</subject><subject>Stresses</subject><subject>Structural and continuum mechanics</subject><subject>Yield function</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoPPPQinrpOkn5ehGVZP2DBi55Dkk4hpdvUTCvsv7eli0fhwcDw3rw3j7F7DhsOPHtqNq7pW00bAdMK-AS4YCte5GUseJpcshXkSRlnCS-v2Q1RAwBpIfmK7bfRrBycdcMpOvoK26j2IeoDEo0B4wp77Crshkh3jvwQfO9sZLFtx1aHiHzrKrplV7VuCe_Oc82-Xvafu7f48PH6vtseYiuzYohTEHktTCnzEnnJsyKV0hQcbVXLyhhhahRGQC241lYgWFNqXWpjAAtMpJVr9rjc7YP_HpEGdXQ0Z9Ed-pFUkadQAAgxMZOFaYMnClirPrijDifFQc2lqUYtpam5NAV8Akyyh7OBJqvbOujOOvrTCinzXE6x1-x54eH07Y_DoMg67CxWLqAdVOXd_0a_kXeFyA</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Alkhader, M.</creator><creator>Vural, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20101101</creationdate><title>A plasticity model for pressure-dependent anisotropic cellular solids</title><author>Alkhader, M. ; Vural, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5027f2b9379e19168533b81ecdf3dbb2bfe2b20f21aac2e0cb9aa9abb0e8e43c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anisotropic</topic><topic>Anisotropy</topic><topic>Cellular</topic><topic>Cellular solids</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Foams</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Plasticity</topic><topic>Pressure-dependent</topic><topic>Solid mechanics</topic><topic>Strain</topic><topic>Stresses</topic><topic>Structural and continuum mechanics</topic><topic>Yield function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alkhader, M.</creatorcontrib><creatorcontrib>Vural, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkhader, M.</au><au>Vural, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A plasticity model for pressure-dependent anisotropic cellular solids</atitle><jtitle>International journal of plasticity</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>26</volume><issue>11</issue><spage>1591</spage><epage>1605</epage><pages>1591-1605</pages><issn>0749-6419</issn><eissn>1879-2154</eissn><coden>IJPLER</coden><abstract>The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characteristic strain, are used to describe the constitutive response of cellular material along various stress paths. The coupling between loading path and strain hardening is then investigated in characteristic stress–strain domain. The nature of the flow rule that best describes the plastic flow of cellular solid is also investigated. An incremental plasticity framework is proposed to describe the pressure-dependent plastic flow of 2D stochastic cellular solids. The proposed plasticity framework adopts the anisotropic and pressure-dependent yield function recently introduced by Alkhader and Vural [Alkhader M., Vural M., 2009a. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. J. Mech. Phys. Solids 57(5), 871–890]. It has been shown that the proposed yield function can be simply calibrated using elastic constants and flow stresses under uniaixal loading. Comparison of stress fields predicted by continuum plasticity model to the ones obtained from FE analysis shows good agreement for the range of loading paths and strains investigated.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2010.01.010</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-6419
ispartof International journal of plasticity, 2010-11, Vol.26 (11), p.1591-1605
issn 0749-6419
1879-2154
language eng
recordid cdi_proquest_miscellaneous_875080022
source ScienceDirect Freedom Collection
subjects Anisotropic
Anisotropy
Cellular
Cellular solids
Computer simulation
Exact sciences and technology
Finite element method
Foams
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Mathematical models
Physics
Plasticity
Pressure-dependent
Solid mechanics
Strain
Stresses
Structural and continuum mechanics
Yield function
title A plasticity model for pressure-dependent anisotropic cellular solids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20plasticity%20model%20for%20pressure-dependent%20anisotropic%20cellular%20solids&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Alkhader,%20M.&rft.date=2010-11-01&rft.volume=26&rft.issue=11&rft.spage=1591&rft.epage=1605&rft.pages=1591-1605&rft.issn=0749-6419&rft.eissn=1879-2154&rft.coden=IJPLER&rft_id=info:doi/10.1016/j.ijplas.2010.01.010&rft_dat=%3Cproquest_cross%3E875080022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-5027f2b9379e19168533b81ecdf3dbb2bfe2b20f21aac2e0cb9aa9abb0e8e43c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=875080022&rft_id=info:pmid/&rfr_iscdi=true