Loading…
A plasticity model for pressure-dependent anisotropic cellular solids
The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characterist...
Saved in:
Published in: | International journal of plasticity 2010-11, Vol.26 (11), p.1591-1605 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-5027f2b9379e19168533b81ecdf3dbb2bfe2b20f21aac2e0cb9aa9abb0e8e43c3 |
---|---|
cites | |
container_end_page | 1605 |
container_issue | 11 |
container_start_page | 1591 |
container_title | International journal of plasticity |
container_volume | 26 |
creator | Alkhader, M. Vural, M. |
description | The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characteristic strain, are used to describe the constitutive response of cellular material along various stress paths. The coupling between loading path and strain hardening is then investigated in characteristic stress–strain domain. The nature of the flow rule that best describes the plastic flow of cellular solid is also investigated. An incremental plasticity framework is proposed to describe the pressure-dependent plastic flow of 2D stochastic cellular solids. The proposed plasticity framework adopts the anisotropic and pressure-dependent yield function recently introduced by Alkhader and Vural [Alkhader M., Vural M., 2009a. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. J. Mech. Phys. Solids 57(5), 871–890]. It has been shown that the proposed yield function can be simply calibrated using elastic constants and flow stresses under uniaixal loading. Comparison of stress fields predicted by continuum plasticity model to the ones obtained from FE analysis shows good agreement for the range of loading paths and strains investigated. |
doi_str_mv | 10.1016/j.ijplas.2010.01.010 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875080022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641910000112</els_id><sourcerecordid>875080022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5027f2b9379e19168533b81ecdf3dbb2bfe2b20f21aac2e0cb9aa9abb0e8e43c3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoPPPQinrpOkn5ehGVZP2DBi55Dkk4hpdvUTCvsv7eli0fhwcDw3rw3j7F7DhsOPHtqNq7pW00bAdMK-AS4YCte5GUseJpcshXkSRlnCS-v2Q1RAwBpIfmK7bfRrBycdcMpOvoK26j2IeoDEo0B4wp77Crshkh3jvwQfO9sZLFtx1aHiHzrKrplV7VuCe_Oc82-Xvafu7f48PH6vtseYiuzYohTEHktTCnzEnnJsyKV0hQcbVXLyhhhahRGQC241lYgWFNqXWpjAAtMpJVr9rjc7YP_HpEGdXQ0Z9Ed-pFUkadQAAgxMZOFaYMnClirPrijDifFQc2lqUYtpam5NAV8Akyyh7OBJqvbOujOOvrTCinzXE6x1-x54eH07Y_DoMg67CxWLqAdVOXd_0a_kXeFyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875080022</pqid></control><display><type>article</type><title>A plasticity model for pressure-dependent anisotropic cellular solids</title><source>ScienceDirect Freedom Collection</source><creator>Alkhader, M. ; Vural, M.</creator><creatorcontrib>Alkhader, M. ; Vural, M.</creatorcontrib><description>The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characteristic strain, are used to describe the constitutive response of cellular material along various stress paths. The coupling between loading path and strain hardening is then investigated in characteristic stress–strain domain. The nature of the flow rule that best describes the plastic flow of cellular solid is also investigated. An incremental plasticity framework is proposed to describe the pressure-dependent plastic flow of 2D stochastic cellular solids. The proposed plasticity framework adopts the anisotropic and pressure-dependent yield function recently introduced by Alkhader and Vural [Alkhader M., Vural M., 2009a. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. J. Mech. Phys. Solids 57(5), 871–890]. It has been shown that the proposed yield function can be simply calibrated using elastic constants and flow stresses under uniaixal loading. Comparison of stress fields predicted by continuum plasticity model to the ones obtained from FE analysis shows good agreement for the range of loading paths and strains investigated.</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2010.01.010</identifier><identifier>CODEN: IJPLER</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anisotropic ; Anisotropy ; Cellular ; Cellular solids ; Computer simulation ; Exact sciences and technology ; Finite element method ; Foams ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical models ; Physics ; Plasticity ; Pressure-dependent ; Solid mechanics ; Strain ; Stresses ; Structural and continuum mechanics ; Yield function</subject><ispartof>International journal of plasticity, 2010-11, Vol.26 (11), p.1591-1605</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5027f2b9379e19168533b81ecdf3dbb2bfe2b20f21aac2e0cb9aa9abb0e8e43c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23377385$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alkhader, M.</creatorcontrib><creatorcontrib>Vural, M.</creatorcontrib><title>A plasticity model for pressure-dependent anisotropic cellular solids</title><title>International journal of plasticity</title><description>The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characteristic strain, are used to describe the constitutive response of cellular material along various stress paths. The coupling between loading path and strain hardening is then investigated in characteristic stress–strain domain. The nature of the flow rule that best describes the plastic flow of cellular solid is also investigated. An incremental plasticity framework is proposed to describe the pressure-dependent plastic flow of 2D stochastic cellular solids. The proposed plasticity framework adopts the anisotropic and pressure-dependent yield function recently introduced by Alkhader and Vural [Alkhader M., Vural M., 2009a. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. J. Mech. Phys. Solids 57(5), 871–890]. It has been shown that the proposed yield function can be simply calibrated using elastic constants and flow stresses under uniaixal loading. Comparison of stress fields predicted by continuum plasticity model to the ones obtained from FE analysis shows good agreement for the range of loading paths and strains investigated.</description><subject>Anisotropic</subject><subject>Anisotropy</subject><subject>Cellular</subject><subject>Cellular solids</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Foams</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Plasticity</subject><subject>Pressure-dependent</subject><subject>Solid mechanics</subject><subject>Strain</subject><subject>Stresses</subject><subject>Structural and continuum mechanics</subject><subject>Yield function</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoPPPQinrpOkn5ehGVZP2DBi55Dkk4hpdvUTCvsv7eli0fhwcDw3rw3j7F7DhsOPHtqNq7pW00bAdMK-AS4YCte5GUseJpcshXkSRlnCS-v2Q1RAwBpIfmK7bfRrBycdcMpOvoK26j2IeoDEo0B4wp77Crshkh3jvwQfO9sZLFtx1aHiHzrKrplV7VuCe_Oc82-Xvafu7f48PH6vtseYiuzYohTEHktTCnzEnnJsyKV0hQcbVXLyhhhahRGQC241lYgWFNqXWpjAAtMpJVr9rjc7YP_HpEGdXQ0Z9Ed-pFUkadQAAgxMZOFaYMnClirPrijDifFQc2lqUYtpam5NAV8Akyyh7OBJqvbOujOOvrTCinzXE6x1-x54eH07Y_DoMg67CxWLqAdVOXd_0a_kXeFyA</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Alkhader, M.</creator><creator>Vural, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20101101</creationdate><title>A plasticity model for pressure-dependent anisotropic cellular solids</title><author>Alkhader, M. ; Vural, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5027f2b9379e19168533b81ecdf3dbb2bfe2b20f21aac2e0cb9aa9abb0e8e43c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anisotropic</topic><topic>Anisotropy</topic><topic>Cellular</topic><topic>Cellular solids</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Foams</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Plasticity</topic><topic>Pressure-dependent</topic><topic>Solid mechanics</topic><topic>Strain</topic><topic>Stresses</topic><topic>Structural and continuum mechanics</topic><topic>Yield function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alkhader, M.</creatorcontrib><creatorcontrib>Vural, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkhader, M.</au><au>Vural, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A plasticity model for pressure-dependent anisotropic cellular solids</atitle><jtitle>International journal of plasticity</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>26</volume><issue>11</issue><spage>1591</spage><epage>1605</epage><pages>1591-1605</pages><issn>0749-6419</issn><eissn>1879-2154</eissn><coden>IJPLER</coden><abstract>The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characteristic strain, are used to describe the constitutive response of cellular material along various stress paths. The coupling between loading path and strain hardening is then investigated in characteristic stress–strain domain. The nature of the flow rule that best describes the plastic flow of cellular solid is also investigated. An incremental plasticity framework is proposed to describe the pressure-dependent plastic flow of 2D stochastic cellular solids. The proposed plasticity framework adopts the anisotropic and pressure-dependent yield function recently introduced by Alkhader and Vural [Alkhader M., Vural M., 2009a. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. J. Mech. Phys. Solids 57(5), 871–890]. It has been shown that the proposed yield function can be simply calibrated using elastic constants and flow stresses under uniaixal loading. Comparison of stress fields predicted by continuum plasticity model to the ones obtained from FE analysis shows good agreement for the range of loading paths and strains investigated.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2010.01.010</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-6419 |
ispartof | International journal of plasticity, 2010-11, Vol.26 (11), p.1591-1605 |
issn | 0749-6419 1879-2154 |
language | eng |
recordid | cdi_proquest_miscellaneous_875080022 |
source | ScienceDirect Freedom Collection |
subjects | Anisotropic Anisotropy Cellular Cellular solids Computer simulation Exact sciences and technology Finite element method Foams Fundamental areas of phenomenology (including applications) Inelasticity (thermoplasticity, viscoplasticity...) Mathematical models Physics Plasticity Pressure-dependent Solid mechanics Strain Stresses Structural and continuum mechanics Yield function |
title | A plasticity model for pressure-dependent anisotropic cellular solids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20plasticity%20model%20for%20pressure-dependent%20anisotropic%20cellular%20solids&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Alkhader,%20M.&rft.date=2010-11-01&rft.volume=26&rft.issue=11&rft.spage=1591&rft.epage=1605&rft.pages=1591-1605&rft.issn=0749-6419&rft.eissn=1879-2154&rft.coden=IJPLER&rft_id=info:doi/10.1016/j.ijplas.2010.01.010&rft_dat=%3Cproquest_cross%3E875080022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-5027f2b9379e19168533b81ecdf3dbb2bfe2b20f21aac2e0cb9aa9abb0e8e43c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=875080022&rft_id=info:pmid/&rfr_iscdi=true |