Loading…
Human Activity Recognition Based on Silhouette Directionality
Recent advances in computer vision and pattern recognition have fueled numerous initiatives that aim to intelligently recognize human activities. In this paper, we propose an algorithm for nonintrusive human activity recognition. We use an adaptive background-foreground separation technique to extra...
Saved in:
Published in: | IEEE transactions on circuits and systems for video technology 2008-09, Vol.18 (9), p.1280-1292 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent advances in computer vision and pattern recognition have fueled numerous initiatives that aim to intelligently recognize human activities. In this paper, we propose an algorithm for nonintrusive human activity recognition. We use an adaptive background-foreground separation technique to extract motion information and generate silhouettes (foreground) from the input videos. We then derive directionality-based feature vectors (directional vectors) from the silhouette contours and use the distinct data distribution of directional vectors in a vector space for clustering and recognition. We also exploit the dynamic characteristic of human motion in order to smooth decisions over time and reduce errors in activity recognition. Our approach is monocular, tolerant to moderate view changes, and can be applied to both frontal and lateral views of most activities. Experiments with short and long video sequences show robust recognition under conditions of varying view angles, zoom depths, backgrounds, and frame rates. |
---|---|
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2008.928888 |