Loading…

Human Activity Recognition Based on Silhouette Directionality

Recent advances in computer vision and pattern recognition have fueled numerous initiatives that aim to intelligently recognize human activities. In this paper, we propose an algorithm for nonintrusive human activity recognition. We use an adaptive background-foreground separation technique to extra...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2008-09, Vol.18 (9), p.1280-1292
Main Authors: Singh, M., Basu, A., Mandal, M.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent advances in computer vision and pattern recognition have fueled numerous initiatives that aim to intelligently recognize human activities. In this paper, we propose an algorithm for nonintrusive human activity recognition. We use an adaptive background-foreground separation technique to extract motion information and generate silhouettes (foreground) from the input videos. We then derive directionality-based feature vectors (directional vectors) from the silhouette contours and use the distinct data distribution of directional vectors in a vector space for clustering and recognition. We also exploit the dynamic characteristic of human motion in order to smooth decisions over time and reduce errors in activity recognition. Our approach is monocular, tolerant to moderate view changes, and can be applied to both frontal and lateral views of most activities. Experiments with short and long video sequences show robust recognition under conditions of varying view angles, zoom depths, backgrounds, and frame rates.
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2008.928888