Loading…

Recombination dynamics in CdTe/CdSe type-II quantum dots

Recombination dynamics in CdTe/CdSe core-shell type-II quantum dots (QDs) has been investigated by time-resolved photoluminescence (PL) spectroscopy. A very long PL decay time of several hundred nanoseconds has been found at low temperature, which can be rationalized by the spatially separated elect...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2008-03, Vol.19 (11), p.115702-115702 (6)
Main Authors: Wang, Chun Hsiung, Chen, Tzung Te, Chen, Yang Fang, Ho, Mei Lin, Lai, Chih Wei, Chou, Pi Tai
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recombination dynamics in CdTe/CdSe core-shell type-II quantum dots (QDs) has been investigated by time-resolved photoluminescence (PL) spectroscopy. A very long PL decay time of several hundred nanoseconds has been found at low temperature, which can be rationalized by the spatially separated electrons and holes occurring in a type-II heterostructure. For the temperature dependence of the radiative lifetime, the linewidth and the peak energy of PL spectra show that the recombination of carriers is dominated by delocalized excitons at temperatures below 150 K, while the mixture of delocalized excitons, electrons and holes overwhelms the process at higher temperature. The binding energy of delocalized excitons obtained from the temperature dependence of the non-radiative lifetime is consistent with the theoretical value. The energy dependence of lifetime measurements reveals a third power relationship between the radiative lifetime and the radius of QDs, the light of which can be shed by the quantum confinement effect. In addition, the radiative decay rate is found to be proportional to the square root of excitation power, arising from the change of wavefunction overlap of electrons and holes due to the band bending effect, which is an inherent character of a type-II band alignment.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/19/11/115702