Loading…
Functional morphology of the luminescence system of Siphamia versicolor (Perciformes: Apogonidae), a bacterially luminous coral reef fish
Previous studies of the luminescence system of Siphamia versicolor (Perciformes: Apogonidae) identified a ventral light organ, reflector, lens, duct, and a ventral diffuser extending from the throat to the caudal peduncle. The control and function of luminescence in this and other species of Siphami...
Saved in:
Published in: | Journal of morphology (1931) 2011-08, Vol.272 (8), p.897-909 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Previous studies of the luminescence system of Siphamia versicolor (Perciformes: Apogonidae) identified a ventral light organ, reflector, lens, duct, and a ventral diffuser extending from the throat to the caudal peduncle. The control and function of luminescence in this and other species of Siphamia, however, have not been defined. Morphological examination of fresh and preserved specimens identified additional components of the luminescence system involved in control and ventral emission of luminescence, including a retractable shutter over the ventral face of the light organ, contiguity of the ventral diffuser from the caudal peduncle to near the chin, and transparency of the bones and other tissues of the lower jaw. The shutter halves retract laterally, allowing the ventral release of light, and relax medially, blocking ventral light emission; topical application of norepinephrine to the exposed light organ resulted in retraction of the shutter halves, which suggests that operation of the shutter is under neuromuscular control. The extension of the diffuser to near the chin and transparency of the lower jaw allow a uniform emission of luminescence over the entire ventrum of the fish. The live aquarium‐held fish were found to readily and consistently display ventral luminescence. At twilight, the fish left the protective association with their longspine sea urchin, Diadema setosum, and began to emit ventral luminescence and to feed on zooplankton. Ventral luminescence illuminated a zone below and around the fish, which typically swam close to the substrate. Shortly after complete darkness, the fish stopped feeding and emitting luminescence. These observations suggest that S. versicolor uses ventral luminescence to attract and feed on zooplankton from the reef benthos at twilight. Ventral luminescence may allow S. versicolor to exploit for feeding the gap at twilight in the presence of potential predators as the reef transitions from diurnally active to nocturnally active organisms. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc |
---|---|
ISSN: | 0362-2525 1097-4687 |
DOI: | 10.1002/jmor.10956 |