Loading…

Cu(I) and Pb(II) complexes containing new tris(7-naphthyridyl)methane derivatives: synthesis, structures, spectroscopy and geometric conversion

Two novel facial-capping tris-naphthyridyl compounds, 2-chloro-5-methyl-7-((2,4-dimethyl-1,8-naphthyridin-7(1H)-ylidene)(2,4-dimethyl-1,8-naphthyridin-7-yl))methyl-1,8-naphthyridine (L(1)) and 2-chloro-7-((2-methyl-1,8-naphthyridin-7(1H)-ylidene)(2-methyl-1,8-naphthyridin-7-yl))methyl-1,8-naphthyrid...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2011-07, Vol.40 (28), p.7365-7374
Main Authors: Gan, Xin, Chi, Shao-Ming, Mu, Wei-Hua, Yao, Jia-Can, Quan, Li, Li, Cong, Bian, Zhao-Yong, Chen, Yong, Fu, Wen-Fu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two novel facial-capping tris-naphthyridyl compounds, 2-chloro-5-methyl-7-((2,4-dimethyl-1,8-naphthyridin-7(1H)-ylidene)(2,4-dimethyl-1,8-naphthyridin-7-yl))methyl-1,8-naphthyridine (L(1)) and 2-chloro-7-((2-methyl-1,8-naphthyridin-7(1H)-ylidene)(2-methyl-1,8-naphthyridin-7-yl))methyl-1,8-naphthyridine (L(2)), as well as their Cu(i) and Pb(ii) complexes, [CuL(a)(PPh(3))]BF(4) (1) (PPh(3) = triphenylphosphine, L(a) = bis(2,4-dimethyl-1,8-naphthyridin-7-yl)(2-chloro-5-methyl-1,8-naphthyridin-7-yl)methane), [CuL(b)(PPh(3))]BF(4) (2) (L(b) = bis(2-methyl-1,8-naphthyridin-7-yl)(2-chloro-1,8-naphthyridin-7-yl)methane), [Pb(OL(a))(NO(3))(2)] (3) (OL(a) = bis(2,4-dimethyl-1,8-naphthyridin-7-yl)(2-chloro-5-methyl-1,8-naphthyridin-7-yl)methanol) and [Pb(L(b))(2)][Pb(CH(3)OH)(NO(3))(4)] (4), have been synthesized and characterized by X-ray diffraction analysis, MS, NMR and elemental analysis. The structural investigations revealed that the transfer of the H-atom at the central carbon to an adjacent naphthyridine-N atom affords L(1) and L(2) possessing large conjugated architectures, and the central carbon atoms adopt the sp(2) hybridized bonding mode. The reversible hydrogen transfer and a geometric configuration conversion from sp(2) to sp(3) of the central carbon atom were observed when Pb(II) and Cu(I) were coordinated to L(1) or L(2). The molecular energy changes accompanying the hydrogen migration and titration of H(+) to different receptor-N at L(1) were calculated by density functional theory (DFT) at the SCRF-B3LYP/6-311++G(d,p) level in a CH(2)Cl(2) solution, and the observed lowest-energy absorption and emission for L(1) and L(2) can be tentatively assigned to an intramolecular charge transfer (ICT) transition in nature.
ISSN:1477-9226
1477-9234
DOI:10.1039/c0dt01747g