Loading…

Propagation of uncertainties in coupled hydro-meteorological forecasting systems: A stochastic approach for the assessment of the total predictive uncertainty

The pressure on the scientific community to provide medium term flood forecasts with associated meaningful predictive uncertainty estimations has increased in recent years. A technique for assessing this uncertainty in hydro-meteorological forecasting systems is presented. In those, the uncertaintie...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric research 2011-05, Vol.100 (2), p.263-274
Main Authors: Hostache, R., Matgen, P., Montanari, A., Montanari, M., Hoffmann, L., Pfister, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-b65d501c1949aa4f9ad84b11a64973ac337d596c9a4fdea4b7eada8badf2c62d3
cites cdi_FETCH-LOGICAL-c377t-b65d501c1949aa4f9ad84b11a64973ac337d596c9a4fdea4b7eada8badf2c62d3
container_end_page 274
container_issue 2
container_start_page 263
container_title Atmospheric research
container_volume 100
creator Hostache, R.
Matgen, P.
Montanari, A.
Montanari, M.
Hoffmann, L.
Pfister, L.
description The pressure on the scientific community to provide medium term flood forecasts with associated meaningful predictive uncertainty estimations has increased in recent years. A technique for assessing this uncertainty in hydro-meteorological forecasting systems is presented. In those, the uncertainties generally propagate from an atmospheric model through a rainfall-runoff model. Consequently, it appears to be difficult to isolate the errors that stem from the individual model components. In this study, the integrated flood forecasting system uses the 7-day rainfall and temperature forecast of the American atmospheric GFS model (deterministic run) as forcing data in a conceptual hydrologic model (deterministic run) coupled with a linear error model in order to predict river discharge. The linear error model is added to the hydrologic model run, in order to take advantage of the correlation in time between forecasting errors, thereby reducing errors that arise from hydrologic simulations. To assess the predictive uncertainty (total uncertainty) of the coupled models, the method makes use of a bivariate meta-gaussian probability density function. The latter allows estimating the probability distribution of the integrated model errors conditioned by the predicted river discharge values. The proposed methodology is applied to the case study of the Alzette river located in the Grand Duchy of Luxembourg. Confidence limits are computed for various lead times of prediction and compared with observations of river discharge.
doi_str_mv 10.1016/j.atmosres.2010.09.014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_876227778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169809510002528</els_id><sourcerecordid>1786216651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-b65d501c1949aa4f9ad84b11a64973ac337d596c9a4fdea4b7eada8badf2c62d3</originalsourceid><addsrcrecordid>eNqFkcuKFDEUhoMo2I6-gmSnm2qTuiQVVw6DNxhwFjPrcDo51Z2mqlLmpAf6ZeZZTdEKrnQV-POd_1x-xt5KsZVCqg_HLeQpUkLa1qKIwmyFbJ-xjex1U9W96Z6zTQFN1QvTvWSviI5CiE60ZsOe7lJcYA85xJnHgZ9mhylDmHNA4mHmLp6WET0_nH2K1YQZY4pj3AcHIx9iQgeUw7zndKaME33k15xydIdVdhyWJUVwhxXl-YAciJBowjmv7VYlx1ysloQ-uBwe8a8Zzq_ZiwFGwje_3yv28OXz_c236vbH1-8317eVa7TO1U51vhPSSdMagHYw4Pt2JyWo1ugGXNNo3xnlTPnzCO1OI3jod-CH2qnaN1fs3cW3TPvzhJTtFMjhOMKM8US216qutdZ9Id__k5S6V7VUqpMFVRfUpUgln8EuKUyQzlYKu0Znj_ZPdHaNzgpjS3Sl8NOlEMvKjwGTJRewXMWHcu9sfQz_s_gF61usMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786216651</pqid></control><display><type>article</type><title>Propagation of uncertainties in coupled hydro-meteorological forecasting systems: A stochastic approach for the assessment of the total predictive uncertainty</title><source>ScienceDirect Journals</source><creator>Hostache, R. ; Matgen, P. ; Montanari, A. ; Montanari, M. ; Hoffmann, L. ; Pfister, L.</creator><creatorcontrib>Hostache, R. ; Matgen, P. ; Montanari, A. ; Montanari, M. ; Hoffmann, L. ; Pfister, L.</creatorcontrib><description>The pressure on the scientific community to provide medium term flood forecasts with associated meaningful predictive uncertainty estimations has increased in recent years. A technique for assessing this uncertainty in hydro-meteorological forecasting systems is presented. In those, the uncertainties generally propagate from an atmospheric model through a rainfall-runoff model. Consequently, it appears to be difficult to isolate the errors that stem from the individual model components. In this study, the integrated flood forecasting system uses the 7-day rainfall and temperature forecast of the American atmospheric GFS model (deterministic run) as forcing data in a conceptual hydrologic model (deterministic run) coupled with a linear error model in order to predict river discharge. The linear error model is added to the hydrologic model run, in order to take advantage of the correlation in time between forecasting errors, thereby reducing errors that arise from hydrologic simulations. To assess the predictive uncertainty (total uncertainty) of the coupled models, the method makes use of a bivariate meta-gaussian probability density function. The latter allows estimating the probability distribution of the integrated model errors conditioned by the predicted river discharge values. The proposed methodology is applied to the case study of the Alzette river located in the Grand Duchy of Luxembourg. Confidence limits are computed for various lead times of prediction and compared with observations of river discharge.</description><identifier>ISSN: 0169-8095</identifier><identifier>EISSN: 1873-2895</identifier><identifier>DOI: 10.1016/j.atmosres.2010.09.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Atmospherics ; Bivariate meta-gaussian density ; Discharge ; Forecasting ; Forecasting chain ; Freshwater ; Hydrology ; Linear model ; Mathematical models ; Permissible error ; Rainfall-runoff model ; Rivers ; Uncertainty</subject><ispartof>Atmospheric research, 2011-05, Vol.100 (2), p.263-274</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-b65d501c1949aa4f9ad84b11a64973ac337d596c9a4fdea4b7eada8badf2c62d3</citedby><cites>FETCH-LOGICAL-c377t-b65d501c1949aa4f9ad84b11a64973ac337d596c9a4fdea4b7eada8badf2c62d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Hostache, R.</creatorcontrib><creatorcontrib>Matgen, P.</creatorcontrib><creatorcontrib>Montanari, A.</creatorcontrib><creatorcontrib>Montanari, M.</creatorcontrib><creatorcontrib>Hoffmann, L.</creatorcontrib><creatorcontrib>Pfister, L.</creatorcontrib><title>Propagation of uncertainties in coupled hydro-meteorological forecasting systems: A stochastic approach for the assessment of the total predictive uncertainty</title><title>Atmospheric research</title><description>The pressure on the scientific community to provide medium term flood forecasts with associated meaningful predictive uncertainty estimations has increased in recent years. A technique for assessing this uncertainty in hydro-meteorological forecasting systems is presented. In those, the uncertainties generally propagate from an atmospheric model through a rainfall-runoff model. Consequently, it appears to be difficult to isolate the errors that stem from the individual model components. In this study, the integrated flood forecasting system uses the 7-day rainfall and temperature forecast of the American atmospheric GFS model (deterministic run) as forcing data in a conceptual hydrologic model (deterministic run) coupled with a linear error model in order to predict river discharge. The linear error model is added to the hydrologic model run, in order to take advantage of the correlation in time between forecasting errors, thereby reducing errors that arise from hydrologic simulations. To assess the predictive uncertainty (total uncertainty) of the coupled models, the method makes use of a bivariate meta-gaussian probability density function. The latter allows estimating the probability distribution of the integrated model errors conditioned by the predicted river discharge values. The proposed methodology is applied to the case study of the Alzette river located in the Grand Duchy of Luxembourg. Confidence limits are computed for various lead times of prediction and compared with observations of river discharge.</description><subject>Atmospherics</subject><subject>Bivariate meta-gaussian density</subject><subject>Discharge</subject><subject>Forecasting</subject><subject>Forecasting chain</subject><subject>Freshwater</subject><subject>Hydrology</subject><subject>Linear model</subject><subject>Mathematical models</subject><subject>Permissible error</subject><subject>Rainfall-runoff model</subject><subject>Rivers</subject><subject>Uncertainty</subject><issn>0169-8095</issn><issn>1873-2895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkcuKFDEUhoMo2I6-gmSnm2qTuiQVVw6DNxhwFjPrcDo51Z2mqlLmpAf6ZeZZTdEKrnQV-POd_1x-xt5KsZVCqg_HLeQpUkLa1qKIwmyFbJ-xjex1U9W96Z6zTQFN1QvTvWSviI5CiE60ZsOe7lJcYA85xJnHgZ9mhylDmHNA4mHmLp6WET0_nH2K1YQZY4pj3AcHIx9iQgeUw7zndKaME33k15xydIdVdhyWJUVwhxXl-YAciJBowjmv7VYlx1ysloQ-uBwe8a8Zzq_ZiwFGwje_3yv28OXz_c236vbH1-8317eVa7TO1U51vhPSSdMagHYw4Pt2JyWo1ugGXNNo3xnlTPnzCO1OI3jod-CH2qnaN1fs3cW3TPvzhJTtFMjhOMKM8US216qutdZ9Id__k5S6V7VUqpMFVRfUpUgln8EuKUyQzlYKu0Znj_ZPdHaNzgpjS3Sl8NOlEMvKjwGTJRewXMWHcu9sfQz_s_gF61usMg</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Hostache, R.</creator><creator>Matgen, P.</creator><creator>Montanari, A.</creator><creator>Montanari, M.</creator><creator>Hoffmann, L.</creator><creator>Pfister, L.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20110501</creationdate><title>Propagation of uncertainties in coupled hydro-meteorological forecasting systems: A stochastic approach for the assessment of the total predictive uncertainty</title><author>Hostache, R. ; Matgen, P. ; Montanari, A. ; Montanari, M. ; Hoffmann, L. ; Pfister, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-b65d501c1949aa4f9ad84b11a64973ac337d596c9a4fdea4b7eada8badf2c62d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atmospherics</topic><topic>Bivariate meta-gaussian density</topic><topic>Discharge</topic><topic>Forecasting</topic><topic>Forecasting chain</topic><topic>Freshwater</topic><topic>Hydrology</topic><topic>Linear model</topic><topic>Mathematical models</topic><topic>Permissible error</topic><topic>Rainfall-runoff model</topic><topic>Rivers</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hostache, R.</creatorcontrib><creatorcontrib>Matgen, P.</creatorcontrib><creatorcontrib>Montanari, A.</creatorcontrib><creatorcontrib>Montanari, M.</creatorcontrib><creatorcontrib>Hoffmann, L.</creatorcontrib><creatorcontrib>Pfister, L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Atmospheric research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hostache, R.</au><au>Matgen, P.</au><au>Montanari, A.</au><au>Montanari, M.</au><au>Hoffmann, L.</au><au>Pfister, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of uncertainties in coupled hydro-meteorological forecasting systems: A stochastic approach for the assessment of the total predictive uncertainty</atitle><jtitle>Atmospheric research</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>100</volume><issue>2</issue><spage>263</spage><epage>274</epage><pages>263-274</pages><issn>0169-8095</issn><eissn>1873-2895</eissn><abstract>The pressure on the scientific community to provide medium term flood forecasts with associated meaningful predictive uncertainty estimations has increased in recent years. A technique for assessing this uncertainty in hydro-meteorological forecasting systems is presented. In those, the uncertainties generally propagate from an atmospheric model through a rainfall-runoff model. Consequently, it appears to be difficult to isolate the errors that stem from the individual model components. In this study, the integrated flood forecasting system uses the 7-day rainfall and temperature forecast of the American atmospheric GFS model (deterministic run) as forcing data in a conceptual hydrologic model (deterministic run) coupled with a linear error model in order to predict river discharge. The linear error model is added to the hydrologic model run, in order to take advantage of the correlation in time between forecasting errors, thereby reducing errors that arise from hydrologic simulations. To assess the predictive uncertainty (total uncertainty) of the coupled models, the method makes use of a bivariate meta-gaussian probability density function. The latter allows estimating the probability distribution of the integrated model errors conditioned by the predicted river discharge values. The proposed methodology is applied to the case study of the Alzette river located in the Grand Duchy of Luxembourg. Confidence limits are computed for various lead times of prediction and compared with observations of river discharge.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.atmosres.2010.09.014</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-8095
ispartof Atmospheric research, 2011-05, Vol.100 (2), p.263-274
issn 0169-8095
1873-2895
language eng
recordid cdi_proquest_miscellaneous_876227778
source ScienceDirect Journals
subjects Atmospherics
Bivariate meta-gaussian density
Discharge
Forecasting
Forecasting chain
Freshwater
Hydrology
Linear model
Mathematical models
Permissible error
Rainfall-runoff model
Rivers
Uncertainty
title Propagation of uncertainties in coupled hydro-meteorological forecasting systems: A stochastic approach for the assessment of the total predictive uncertainty
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20uncertainties%20in%20coupled%20hydro-meteorological%20forecasting%20systems:%20A%20stochastic%20approach%20for%20the%20assessment%20of%20the%20total%20predictive%20uncertainty&rft.jtitle=Atmospheric%20research&rft.au=Hostache,%20R.&rft.date=2011-05-01&rft.volume=100&rft.issue=2&rft.spage=263&rft.epage=274&rft.pages=263-274&rft.issn=0169-8095&rft.eissn=1873-2895&rft_id=info:doi/10.1016/j.atmosres.2010.09.014&rft_dat=%3Cproquest_cross%3E1786216651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-b65d501c1949aa4f9ad84b11a64973ac337d596c9a4fdea4b7eada8badf2c62d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786216651&rft_id=info:pmid/&rfr_iscdi=true