Loading…
Expression of dha Operon Required for 1,3-PD Formation in Escherichia coli and Saccharomyces cerevisiae
The 1,3-propanediol (1,3-PD) synthesis operon (dha operon) was mainly composed of four genes: dhaB, dhaT, gdrA, and gdrB, which encoded glycerol dehydratase, 1,3-PD oxidoreductase and reactivating factor for glycerol dehydratase, respectively. In the present study, dha operon was cloned from 1,3-PD...
Saved in:
Published in: | Current microbiology 2010-03, Vol.60 (3), p.191-198 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The 1,3-propanediol (1,3-PD) synthesis operon (dha operon) was mainly composed of four genes: dhaB, dhaT, gdrA, and gdrB, which encoded glycerol dehydratase, 1,3-PD oxidoreductase and reactivating factor for glycerol dehydratase, respectively. In the present study, dha operon was cloned from 1,3-PD producing strain Klebsiella pneumoniae. Heterologous expression of cloned dha operon was carried out in Escherichia coli and Saccharomyces cerevisiae W303-1A, respectively. The results indicated that recombinant E. coli harboring the dha operon can produce 8-9 g/l 1,3-PD from glycerol while the 1,3-PD yield of recombinant strain W303-1A-dha could not be detected. In order to complete the 1,3-PD production from glucose, further, we also constructed the recombinant S. cerevisiae W303-1A-BT harboring plasmid pZ-BT. The 1,3-PD production and enzymatic activities of DhaB and DhaT were found in the engineered strain W303-1A-BT. Our results demonstrated that the recombinant S. cerevisiae strain W303-1A-BT that can produce 1,3-PD at low cost was constructed. This study might open a novel way to a safe and cost-efficient method for microbial production of 1,3-PD. |
---|---|
ISSN: | 0343-8651 1432-0991 |
DOI: | 10.1007/s00284-009-9528-2 |